
Clausal Resolution for Modal Logics of Confluence –
Extended Version

João Marcos1, Cláudia Nalon2?, and Clare Dixon3

1 LoLITA and Dept. of Informatics and Applied Mathematics, UFRN, Brazil
jmarcos@dimap.ufrn.br

2 Departamento de Ciência da Computação, Universidade de Brası́lia
Caixa Postal 4466 – CEP:70.910-090 – Brası́lia – DF – Brazil

nalon@unb.br
3 Department of Computer Science, University of Liverpool

Liverpool, L69 3BX – United Kingdom
CLDixon@liverpool.ac.uk

Abstract. We present a clausal resolution-based method for normal modal log-
ics of confluence, whose Kripke semantics are based on frames characterized by
appropriate instances of the Church-Rosser property. Differently from other ap-
proaches, where inference rules are based on the syntax of a particular set of
axioms, we focus on the restrictions imposed on the binary accessibility relation
for each particular normal modal logic.

Keywords: normal modal logics, combined logics, resolution method

1 Introduction

Modal logics are often introduced as extensions of classical logic with two addi-
tional unary operators: ‘ ’ and ‘♦’, whose meanings depend on the framework
in which they are defined. In the most common interpretation, formulae ‘ p’
and ‘♦p’ are to be read as “p is necessary” and “p is possible”, respectively.
Evaluation of a modal formula depends on a set of interpretations, also called
set of possible worlds. Given a world w, the set of worlds which are accessible
from w, is defined. Different modal logics assume different accessibility rela-
tions between worlds. Worlds and their accessibility relations define a structure
known as a Kripke structure. The evaluation of a formula depends on this struc-
ture. Given an appropriate accessibility relation and a world w, a formula p is
true at w if p is true at all worlds accessible from w;♦p is true at w if p is true
at some world accessible from w.

In normal modal logics, the schema (ϕ ⇒ ψ) ⇒ (ϕ ⇒ ψ) (the
axiom K), where ϕ and ψ are well-formed formulae and⇒ stands for classical
? C. Nalon was supported by CAPES Foundation BEX 8712/11-5.

implication, is valid. The weakest of these logics, where the axioms for classical
propositional logic and the axiom K hold, is named K(1). They correspond to
the class of Kripke structures with no restrictions imposed on the accessibility
relation. In the multi-modal version, named K(n), Kripke structures are directed
multigraphs and modal operators are equipped with indexes over a set of agents,
given by A = {1, 2, . . . , n}, for some positive integer n. Accordingly, in this
case classical logic is extended with operators 1 , 2 , . . . , n , where a formula
as a p, a ∈ A, is read as “agent a considers p to be necessary”. The modal
operator ♦a is the dual of a and is introduced as an abbreviation for ¬ a ¬,
where ¬ stands for classical negation. The logic K(n) can be seen as the fusion
of n copies of K(1) and the axiomatisation is given by the union of the axioms
for classical propositional logic with the axiomatic schemas a (ϕ ⇒ ψ) ⇒
(a ϕ⇒ a ψ), for each a ∈ A.

A logic of confluence Kp,q,r,s(n) is a modal system axiomatised by K(n) plus
axioms Gp,q,r,s

a of the form

♦a p
a
qϕ⇒ a

r♦a sϕ

where a ≤ n, ϕ is a well-formed formula, p, q, r, s ∈ N, where a 0ϕ
def
= ϕ

and a i+1ϕ
def
= a (a iϕ), where ♦a 0ϕ

def
= ϕ and ♦a i+1ϕ

def
= ♦a ♦a iϕ, for

i ∈ N (the superscript is often omitted if equal to 1). Such axiomatic schemas
are known as Scott-Lemmon axioms [?]. Using Modal Correspondence The-
ory, it can be shown that the frame condition on a logic where an instance of
Gp,q,r,s
a is valid corresponds to a diamond-like structure generalizing the so-

called Church-Rosser property, as illustrated in Fig. 1 [?]. To be a bit more
precise, let W be a nonempty set of worlds and let Ra ⊆ W ×W be the ac-
cessibility relation of agent a ∈ A. By wR0

aw
′ we shall mean that w = w′,

and wRi+1
a w′ will denote that there is some world w′′ such that wRaw′′ and

w′′Riaw′ (thus, wRjaw′ holds good if there is a j-long Ra-path from w to w′;
alternatively, for that we also write (w,w′) ∈ Rja). From that perspective,
the condition on frames that corresponds to the axiom Gp,q,r,s

a is described by
∀w0, w1, w2 (w0Rpaw1 ∧ w0Rraw2 ⇒ ∃w3(w1Rqaw3 ∧ w2Rsaw3)), where w0,
w1, w2, w3 ∈ W .

Many well-known modal axiomatic systems may be identified with partic-
ular logics of confluence. For instance, T(n) corresponds to K0,1,0,0

(n) , i.e. where
the axiom a ϕ ⇒ ϕ is valid, for all a ∈ A and any formula ϕ. The axiom 4
can be written as G0,1,2,0

a , that is, a 1ϕ ⇒ a 2ϕ. The Geach axiom G1, given
by G1,1,1,1

a (♦a a ϕ⇒ a ♦a ϕ), is the converse of the so-called McKinsey’s ax-
iom. Formulae in K1,1,1,1

(n) are satisfiable if, and only if, they are satisfiable in a
confluent model.

w0

w1

w2

w3

p
st
ep
s

r
steps

q
steps

s
st
ep
s

Fig. 1. The diamond property in frames where Gp,q,r,s
a =♦a p a qϕ ⇒ a r♦a sϕ is valid.

In this work, we restrict attention to logics where p, q, r, s ∈ {0, 1}. Ta-
ble 1 shows the relevant axiomatic schemas, their standard names, and respec-
tive conditions on frames. Note that G0,0,0,0

a , G0,1,1,0
a , and G1,0,0,1

a are instances
of classical tautologies and are not included in Table 1. Also, given the duality
between a and♦a , Gp,q,r,s

a is semantically equivalent to Gr,s,p,q
a . Thus, there

are in fact eight families of multi-modal logics related to the axioms Gp,q,r,s
a ,

where p, q, r, s ∈ {0, 1}.

We present a clausal resolution-based method for solving the satisfiability
problem in logics axiomatised by K plus Gp,q,r,s

a , where p, q, r, s ∈ {0, 1}. The
resolution calculus is based on that of [?], which deals with the logical fragment
corresponding to K(n). The new inference rules to deal with axioms of the form
Gp,q,r,s
a add relevant information to the set of clauses: the conclusion of each

inference rule ensures that properties related to the corresponding conditions on
frames hold, that is, the newly added clauses capture the required properties of
a model. We show that the proof method hereby presented is sound, complete,
and terminating.

(p,q,r,s) Name Axioms Property Condition on Frames

(0, 0, 1, 1) B ϕ ⇒ a♦a ϕ symmetric ∀w,w′(wRaw
′ ⇒ w′Raw)

(1, 1, 0, 0) ♦a a ϕ ⇒ ϕ

(0, 0, 1, 0) Ban ϕ ⇒ a ϕ modally banal ∀w,w′(wRaw
′ ⇒ w = w′)

(1, 0, 0, 0) ♦a ϕ ⇒ ϕ

(0, 1, 0, 1) D a ϕ ⇒♦a ϕ serial ∀w∃w′(wRaw
′)

(1, 0, 1, 0) F ♦a ϕ ⇒ a ϕ functional ∀w,w′, w′′((wRaw
′ ∧ wRaw

′′) ⇒
w′ = w′′)

(0, 0, 0, 1) T ϕ ⇒♦a ϕ reflexive ∀w(wRaw)

(0, 1, 0, 0) a ϕ ⇒ ϕ

(1, 0, 1, 1) 5 ♦a ϕ ⇒ a♦a ϕ euclidean ∀w,w′, w′′((wRaw
′ ∧ wRaw

′′) ⇒
w′Raw

′′)

(1, 1, 1, 0) ♦a a ϕ ⇒ a ϕ

(1, 1, 1, 1) G1 ♦a a ϕ ⇒ a♦a ϕ convergent ∀w,w′, w′′((wRaw
′ ∧ wRaw

′′) ⇒
∃w′′′(w′Raw

′′′ ∧ w′′Raw
′′′))

(0, 1, 1, 1) 5−1 a ϕ ⇒ a♦a ϕ converse of euclidean ∀w,w′(wRaw
′ ⇒ ∃w′′(wRaw

′′ ∧
w′Raw

′′))

(1, 1, 0, 1) ♦a a ϕ ⇒♦a ϕ

Table 1. Conditions on Frames

2 The Normal Logic K(n)

As it was already mentioned, the weakest of the normal modal systems, known
as K(n), is an extension of the classical propositional logic with the operators
a , 1 ≤ a ≤ n, where the axiom Ka, i.e. a (ϕ⇒ ψ)⇒ (a ϕ⇒ a ψ), holds.

There is no restriction on the accessibility relation over worlds. As the subscript
in K(n) indicates, we consider the multi-agent version, that is, the fusion of
several copies of K(1).

Formulae are constructed from a denumerable set of propositional sym-
bols, P = {p, q, p′, q′, p1, q1, . . .}. The finite set of agents is defined as A =
{1, . . . , n}. Besides the usual propositional connectives (¬,∧,∨,⇒), we intro-
duce a set of unary modal operators 1 , . . . , n , where a ϕ is read as “agent a
considers ϕ necessary”. When n = 1, we generally may omit the index, that
is, we let ϕ stand for 1 ϕ. The fact that agent a considers ϕ to be possible,
i.e.♦a ϕ holds good, is denoted by asserting that ¬ a ¬ϕ holds good. We define
next the language of K(n) and of all other systems presented in this paper:

Definition 1. The set of well-formed formulae, WFFK(n)
, is the least set such

that:

– the propositional symbols are in WFFK(n)
;

– true is in WFFK(n)
;

– if ϕ and ψ are in WFFK(n)
, then so are ¬ϕ, (ϕ ∧ ψ), and a ϕ, for each

a ∈ A.

A literal is either a proposition or its negation; the set of literals is denoted by L.
By ¬l we will denote the complement of the literal l ∈ L, that is, ¬l shall denote
¬p if l is the propositional symbol p, and ¬l shall denote p if l is the literal ¬p.
A modal literal is either a l or ¬ a l, where l ∈ L and a ∈ A.

The semantics of K(n) is given, as usual, in terms of Kripke structures.

Definition 2. By a Kripke structure S for n agents over P we mean a tuple
(W, w0,R1,R2, . . . ,Rn), whereW is a set of possible worlds (or states) with
a distinguished world w0 , and each Ra is a binary relation on W . A Kripke
model M = (S, π) equips a Kripke structure S with a function π : W →
(P → {true, false}) that plays the role of an interpretation that associates to
each state w ∈ W a truth-assignment to propositions.

The binary relation Ra captures the accessibility relation according to agent
a: a pair (w,w′) is in Ra if agent a considers world w′ possible, given her
information in world w. We write 〈M, w〉 |= ϕ to say that ϕ is true at world w
in the Kripke modelM, and write 〈M, w〉 6|= ϕ to say that ϕ is false at w.

Definition 3. Truth of a formula is defined as follows:

– 〈M, w〉 |= true
– 〈M, w〉 |= p if, and only if, π(w)(p) = true, where p ∈ P
– 〈M, w〉 |= ¬ϕ if, and only if, 〈M, w〉 6|= ϕ
– 〈M, w〉 |= (ϕ ∧ ψ) if, and only if, 〈M, w〉 |= ϕ and 〈M, w〉 |= ψ
– 〈M, w〉 |= a ϕ if, and only if 〈M, w′〉 |= ϕ, for all w′ such that wRaw′

The formulae false, (ϕ ∨ ψ), (ϕ ⇒ ψ), and ♦a ϕ are introduced as the usual
abbreviations for ¬true, ¬(¬ϕ ∧ ¬ψ), (¬ϕ ∨ ψ), and ¬ a ¬ϕ, respectively.
Formulae are interpreted with respect to the distinguished world w0, that is,
satisfiability is defined with respect to pointed-models. Intuitively, w0 is the
world from which we start reasoning. A formula ϕ is said to be satisfied in
the model M = (S, π) of the Kripke structure S = (W, w0,R1, . . . ,Rn) if
〈M, w0〉 |= ϕ; ϕ is satisfiable in a Kripke structure S if there is a model M
of S such that 〈M, w0〉 |= ϕ; and ϕ is said to be valid in a class E of Kripke
structures if it is satisfied in any model of any Kripke structure belonging to the
class E .

3 Resolution for K(n)

In [?], a sound, complete, and terminating resolution-based method for K(n) is
introduced. The approach is clausal: a formula to be tested for (un)satisfiability
is firstly translated into a normal form, explained in Section 3.1, and then the
inference rules given in Section 3.2 are applied until either a contradiction is
found or no new clauses can be generated.

3.1 A Normal Form for K(n)

Formulae in the language of K(n) can be transformed into a normal form
called Separated Normal Form for Normal Logics (SNFK). As the seman-
tics is given with respect to a pointed-model, we add a nullary connective
start in order to represent the world from which we start reasoning. For-
mally, given a modelM = (W, w0, π,R1, . . . ,Rn), we have that 〈M, w〉 |=
start if, and only if, w = w0. A formula in SNFK is represented by a con-
junction of clauses, which are true at all reachable states, that is, they have the
general form

∗∧
iAi

where Ai is a clause and ∗, the universal operator, characterized by the fol-
lowing truth-condition: 〈M, w〉 |= ∗ϕ if, and only if, 〈M, w〉 |= ϕ, and
for all w′ such that (w,w′) ∈ Ra, for any a ∈ A, 〈M, w′〉 |= ∗ϕ. Observe
that ϕ must hold at the actual world w and at every world reachable from w,
where reachability is defined in the usual way. The universal operator, which
surrounds all clauses, ensures that the translation of a formula is true at all
reachable worlds. Clauses are in one of the following forms:

– Initial clause start⇒
r∨
b=1

lb

– Literal clause true⇒
r∨
b=1

lb

– Positive a-clause l′ ⇒ a l

– Negative a-clause l′ ⇒ ¬ a l

where l, l′, lb ∈ L. Positive and negative a-clauses are together known as modal
a-clauses; the index may be omitted if it is clear from the context.

The translation to SNFK uses the renaming technique [?], where complex
subformulae are replaced by new propositional symbols and the truth of these
new symbols is linked to the formulae that they replaced in all states. We refer
the reader to [?] for details on the transformation rules and their correctness. In
the following, we show here, by means of an example, how the transformation
is applied.

Example 1. Let ϕ be the formula ¬(1 (a ⇒ b) ⇒ (1 a ⇒ 1 b)). We show
how to translate ϕ into its normal form. First we anchor ϕ to the initial state,
that is, we have the clauses:

1. start⇒ t1

2. t1 ⇒ ¬(1 (a⇒ b)⇒ (1 a⇒ 1 b))

where (1) is in the normal form, but clause (2) is not. As ¬(1 (a ⇒ b) ⇒
(1 a⇒ 1 b)) is semantically equivalent to a conjunctive formula, (2) is rewrit-
ten as:

3. t1 ⇒ 1 (a⇒ b)

4. t1 ⇒ ¬(1 a⇒ 1 b))

and, for the same reason, (4) is rewritten as:

5. t1 ⇒ 1 a

6. t1 ⇒ ¬ 1 b

As clause (3) has a complex formula in the scope of 1 , we introduce a new
propositional symbol, t2, and rewrite (3) as:

7. t1 ⇒ 1 t2

8. t2 ⇒ (a⇒ b)

Finally, (8) is rewritten into the normal form, that is, we obtain:

9. true⇒ ¬t2 ∨ ¬a ∨ b

The final set of clauses is given by:

1. start⇒ t1

5. t1 ⇒ 1 a

6. t1 ⇒ ¬ 1 b

7. t1 ⇒ 1 t2

9. true⇒ ¬t2 ∨ ¬a ∨ b

3.2 Inference Rules for K(n)

In the following, l, l′, li, l′i ∈ L (i ∈ N) and D, D′ are disjunctions of literals.

Literal Resolution. This is classical resolution applied to the propositional por-
tion of the combined logic. An initial clause may be resolved with either a literal
clause or an initial clause (IRES1 and IRES2).

[IRES1] ∗(true⇒D ∨ l)
∗(start⇒D′ ∨ ¬l)
∗(start⇒D ∨D′)

[IRES2] ∗(start⇒D ∨ l)
∗(start⇒D′ ∨ ¬l)
∗(start⇒D ∨D′)

Literal clauses may be resolved together (LRES):

[LRES] ∗(true⇒ D ∨ l)
∗(true⇒ D′ ∨ ¬l)
∗(true⇒ D ∨D′)

Modal Resolution. These rules are applied between clauses which refer to the
same context, that is, they must refer to the same agent. For instance, we amy
resolve two or more 1 -clauses (MRES and GEN2); or several 1 -clauses and
a literal clause (GEN1 and GEN3). The modal inference rules are (assuming
m¿0):

[MRES] ∗(l1 ⇒ a l)

∗(l2 ⇒¬ a l)

∗(true ⇒¬l1 ∨ ¬l2)

[GEN1] ∗(l′1 ⇒ a ¬l1)
...

∗(l′m ⇒ a ¬lm)

∗(l′⇒¬ a ¬l)
∗(true ⇒ l1 ∨ . . . ∨ lm ∨ ¬l)
∗(true ⇒¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′)

[GEN2] ∗(l′1 ⇒ a l1)

∗(l′2 ⇒ a ¬l1)
∗(l′3 ⇒¬ a ¬l2)
∗(true ⇒¬l′1 ∨ ¬l′2 ∨ ¬l′3)

[GEN3] ∗(l′1 ⇒ a ¬l1)
...

∗(l′m ⇒ a ¬lm)

∗(l′⇒¬ a ¬l)
∗(true ⇒ l1 ∨ . . . ∨ lm)

∗(true ⇒¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′)

MRES is equivalent to classical resolution, as a formula and its negation cannot
be true at the same state. The GEN1 rule corresponds to generalisation (applied
to (¬l1 ∧ . . . ∧ ¬lm ⇒ ¬l), which is equivalent to the literal clause in the
premises) and several applications of classical resolution. GEN2 is a special
case of GEN1, as the parent clauses can be resolved with tautologies as true⇒
l1 ∨¬l1 ∨¬l2. GEN3 is similar to GEN1, however the negative modal clause is
not resolved with the literal clause in the premises. Instead, the negative modal
clause requires that resolution takes place between literals on the right-hand side
of positive modal clauses and the literal clause. The resolvents in the inference
rules GEN1–GEN3 impose that the literals on the left-hand side of the modal
clauses in the premises are not all satisfied whenever their conjunction leads to
a contradiction in a successor state. Given the syntactic forms of clauses, the
three rules are needed for completeness, as shown in [?].

Simplification. We assume standard simplification from classical logic to keep
the clauses as simple as possible. For example, D ∨ l ∨ l on the right-hand side
of an initial or literal clause would be rewritten as D ∨ l.

Example 2. We wish to establish whether the formula 1 2 (a ⇒ b) ⇒
(1 2 a ⇒ 1 2 b) is valid in K(2). The translation of its negation into the nor-
mal form is given by clauses (1)–(8) below. Then the inference rules are applied
until false is generated. The full refutation follows.

1. start⇒ t1

2. t1 ⇒ 1 t2

3. t2 ⇒ 2 t3

4. true⇒ ¬t3 ∨ ¬a ∨ b

5. t1 ⇒ 1 t4

6. t4 ⇒ 2 a

7. t1 ⇒ ¬ 1 ¬t5
8. t5 ⇒ ¬ 2 b

9. true⇒ ¬t5 ∨ ¬t4 ∨ ¬t2 [8,4,6,3 ,GEN1]

10. true⇒ ¬t1 [9,7,5,2 ,GEN1]

11. start⇒ false [10,1,IRES1]

Clause (9) is obtained by an application of GEN1 to clauses in the context of
agent 2. Clause (10) is obtained by an application of the same rule, but in the
context of agent 1. Clause (11) shows that a contradiction was found at the initial
state. Therefore, the original formula is valid.

4 Clausal Resolution for Logics of Confluence

The inference rules of K(n), given in Section 3.2, are resolution-based: when-
ever a set of (sub)formulae is identified as contradictory, the resolvents require
that they are not all satisfied together. The extra inference rules for Kp,q,r,s(n) , with
p, q, r, s ∈ {0, 1}, which we are about to present, have a different flavour: when-
ever we can identify that the set of clauses imply that ♦a p

a qψ holds, we add
some new clauses that ensure that a r♦a sψ also holds. Because of the particular
normal form we use here, there are, in fact, two general forms for the inference
rules for Kp,q,r,s(n) , given in Table 2 (where l, l′ are literals and C is a conjunction
of literals).

[RESp,1,r,s
a] ∗(l ⇒ a l′)

∗(♦a pl ⇒ a r♦a sl′)

[RESp,0,r,s
a] ∗(C ⇒♦a pl′)

∗(C ⇒ a r♦a sl′)

Table 2. Inference Rules for Gp,q,r,s
a

The conclusions of the inference rules in Table 2 are obtained from the se-
mantics of the universal operator and the distribution axiom. For RESp,1,r,sa ,
we have that ∗(l ⇒ a l′) is semantically equivalent to ∗(¬ a l′ ⇒ ¬l).
By the definition of the universal operator, we obtain ∗(a p(¬ a l′ ⇒ ¬l)).
Applying the distribution axiom Ka to this clause results in ∗(a p¬ a l′ ⇒
a p¬l)), which is semantically equivalent to ∗(¬ a p¬l ⇒ ¬ a p¬ a l′).

As ♦a is an abbreviation for ¬ a ¬ and because ♦a p
a l′ implies ♦a r

a sl′ in
Kp,1,r,s(n) , by classical reasoning, we have that ∗(¬ a p¬l ⇒ ¬ a p¬ a l′) im-
plies ∗(♦a pl ⇒ ♦a r

a sl′), the conclusion of RESp,1,r,sa . The conclusion in
the inference rule RESp,0,r,sa can be obtained in a similar way.

In order to respect the normal form, we also need to add clauses corre-
sponding to the normal form of♦a pl and♦a sl′, which occur in the conclusions
of the inference rules. Let ϕ be a formula and let τ0(ϕ) be the set of clauses
resulting from the translation of ϕ into the normal form. Let L(τ0(ϕ)) be the
set of literals that might occur in the clause set, that is, L(τ0(ϕ)) = {p,¬p |
for all p occurring in τ0(ϕ)}. The set of definition clauses is given by

posa,l ⇒ ¬ a ¬l

¬posa,l ⇒ a ¬l

for all l ∈ L(τ0(ϕ)), where posa,l is a new propositional definition symbol
used for renaming the negative modal literal♦a l, that is, the definition clauses
correspond to the normal form of posa,l ⇔ ¬ a ¬l. We assume the set of defi-
nition clauses to be available whenever those symbols are used. We emphasise
that those new propositional symbols and respective definition clauses may all
be introduced at the beginning of the application of the resolution method. As
no new propositional symbols are introduced by the inference rules, there is a
finite number of clauses that might be expressed (modulo simplification) and,
therefore, the clausal resolution method for each modal logic of confluence is
terminating, thus convergent.

Table 3 shows the inference rules for each specific instance of Gp,q,r,s
a ,

where l, l′ ∈ L; and D is a disjunction of literals. As Gp,q,r,s
a is semantically

equivalent to Gr,s,p,q
a , the inference rules for both systems are grouped together.

Some of the rules are obtained straight from Table 2. For instance, the rules for
reflexive systems, i.e. where G0,0,0,1

a and G0,1,0,0
a are valid. For other systems,

the form of the inference rules might be slightly different from what would be
obtained from a direct application of the general inference rules in Table 2. This
is the case, for instance, for the inference rules for symmetric systems, that is,
where G1,1,0,0

a is valid. From Table 2, if a premise of the form ∗(l ⇒ a l′),
the conclusion is given by ∗(♦a p=1l ⇒ a r=0♦a s=0), which translates di-
rectly into the normal form as ∗(true ⇒ posa,l ∨ l′). We have chosen, how-
ever, to translate the conclusion as ∗(¬l′ ⇒ a ¬l), which is semantically
equivalent to the conclusion obtained by the general inference rule, but it does
not use the new propositional symbols.

The inference rules given in Table 2 provide a systematic way of designing
the inference rules for each specific modal logic of confluence. We note, how-

ever, that we might not need both inference rules in order to achieve a complete
proof method for a particular logic. In the completeness proofs provided in the
Appendix A, we show that the inference rules which introduce modalities in
their conclusions from literal clauses (that is, the inference rules for RES0,0,r,s

a)
are not needed for completeness. We also show that we only need one infer-
ence rule for logics in which 5−1 is valid. In this case, we show that RES1,1,0,1

a

together with the resolution rules for K(n) are sufficient for completeness. How-
ever we need both inference rules in the case of the proof method for logics in
which 5 is valid.

Name Resolution

T
[RES0,0,0,1

a] ∗(true ⇒ D ∨ l)

∗(¬D ⇒ ¬ a ¬l)

[RES0,1,0,0
a] ∗(l ⇒ a l′)

∗(true ⇒ ¬l ∨ l′)

Ban
[RES0,0,1,0

a] ∗(true ⇒ D ∨ l)

∗(¬D ⇒ a l)

[RES1,0,0,0
a] ∗(l ⇒ ¬ a ¬l′)

∗(true ⇒ ¬l ∨ l′)

B
[RES0,0,1,1

a] ∗(true ⇒ D ∨ l)

∗(¬D ⇒ a posa,l)

[RES1,1,0,0
a] ∗(l ⇒ a l′)

∗(¬l′ ⇒ a ¬l)

D
[RES0,1,0,1

a] ∗(l ⇒ a l′)

∗(l ⇒ ¬ a ¬l′)

Name Resolution

5−1 [RES0,1,1,1
a] ∗(l ⇒ a l′)

∗(l ⇒ a posa,l′)

[RES1,1,0,1
a] ∗(l ⇒ a l′)

∗(posa,l ⇒ ¬ a ¬l′)

F
[RES1,0,1,0

a] ∗(l ⇒ ¬ a ¬l′)
∗(l ⇒ a l′)

5
[RES1,0,1,1

a] ∗(l ⇒ ¬ a ¬l′)
∗(l ⇒ a posa,l′)

[RES1,1,1,0
a] ∗(l ⇒ a l′)

∗(posa,l ⇒ a l′)

G1
[RES1,1,1,1

a] ∗(l ⇒ a l′)

∗(posa,l ⇒ a posa,l′)

Table 3. Resolution Rules

Given a formula ϕ in Kp,q,r,s(n) , with p, q, r, s ∈ {0, 1}, the resolution method
for K(n), given in Section 3, is applied to τ0(ϕ) and the set of definition
clauses. The extra inference rules for Kp,q,r,s(n) cannot be applied to clauses if
it generates nested new propositional symbols. For instance, RES1,1,1,1

a can-
not be applied to a clause as ∗(l ⇒ a posa,l′), as this would result in
∗(posa,l ⇒ a posa,posa,l′). This ensures that no new definition symbols are

introduced by the method. The resolution-based proof method for each modal
logic Kp,q,r,s(n) is sound, complete, and terminating. The proofs are given in Ap-
pendix A. We present next just an example to illustrate the use of the method.

We note that a contradiction could also be derived if we had used the inference
rule for B. The example shows, however, how one can combine the inference
rules for systems for which both T and 5 are valid in order to achieve the same
result.

Example 3. We show that ϕ def
= p ⇒ 1 ♦1 p is a valid formula in systems char-

acterized by frames that are both reflexive and euclidean. Clauses (1)–(4) corre-
spond to the translation of the negation of ϕ into the normal form.

1. start⇒ t0

2. true⇒ ¬t0 ∨ p

3. t0 ⇒ ¬ 1 ¬t1
4. t1 ⇒ 1 ¬p

5. pos1,t1 ⇒ 1 ¬p [RES1,1,1,0
1 , 4]

6. true⇒ ¬pos1,t1 ∨ ¬p [RES0,1,0,0
1 , 5]

7. ¬pos1,t1 ⇒ 1 ¬t1 [Def . pos1,t1]

8. true⇒ ¬t0 ∨ pos1,t1 [MRES, 7, 3]

9. true⇒ ¬t0 ∨ ¬p [LRES, 8, 6]

10. true⇒ ¬t0 [LRES, 9, 2]

11. start⇒ false [IRES1, 10, 1]

Clause (5) results from applying the euclidean inference rule to clause (4).
Clause (6) results from applying the reflexive inference rule to (5). The defi-
nition clause for pos1,t1 is introduced in (7). The remaining clauses are derived
by the resolution calculus for K(1). As a contradiction is found, given by clause
(11), the set of clauses is unsatisfiable and the original formula ϕ is valid.

5 Closing Remarks

We have presented a sound, complete, and terminating proof method for logics
of confluence, that is, normal multi-modal systems where axioms of the form

Gp,q,r,s
a =♦a p

a
qϕ⇒ a

r♦a sϕ

are valid. The axioms Gp,q,r,s
a provide a general form for axioms widely used

in logical formalisms applied to representation and reasoning within Computer
Science. In this paper, we have restricted attention to the case where p, q, r, s ∈

{0, 1}, but we believe that the proof method can be extended in a uniform way
for dealing with the unsatisfiability problem for any values of p, q, r, and s, as far
as we can identify the restrictions on the number of new propositional symbols
introduced by the metod.

The proof method presented in this paper can be used to prove the unsatisfi-
ability for eight families of logics and their combinations. However, as these are
not dedicated proof methods, they might not provide the most efficient way of
dealing with such a problem when considering a particular logic, as the method
relies in the inference machine for K(n). Note that the satisfiability problem
for K(1) is PSPACE-complete [?]. However, having a uniform approach for
dealing with different logics means that implementation can be obtained in a
straightforward way. Based on an implementation for K(n), the automated rea-
soning for the remaining logics depends only on the implementation of few
inference rules.

As mentioned, we intend to extend the method to deal with unrestricted
values of p, q, r, and s. We also intend to investigate if the method can be applied
together with other proof methods, as, for instance, tableaux.

A Correctness

In this appendix, we provide the correctness results related to the resolution-
based calculus for modal logics of confluence, that is, soundness, termination,
and completeness results for this method.

The proof that transformation of a formula ϕ ∈ WFFK(n)
into its normal

form is satisfiability preserving is given in [?,?].

Soundness consists in showing that the application of the inference rules are
satisfiability preserving, which follows from Lemmas 1 and 2 given below.

Lemma 1. RESp,1,r,sa is sound.

Proof. Let M = (W, w0, π,R1, . . . ,Rn) be a model such that M |=
∗(l ⇒ a l′). By the semantics of the implication, we have that M |=
∗(¬ a l′ ⇒ ¬l). By the semantics of the universal operator, we obtain

that M |= ∗ a p(¬ a l′ ⇒ ¬l). By axiom K, we have that M |=
∗(a p¬ a l′ ⇒ a p¬l). By the semantics of implication, we obtain that

M |= ∗(¬ a p¬l ⇒ ¬ a p¬ a l′). By Gp,1,r,s
a and classical reasoning,

M |= ∗(¬ a p¬l ⇒ a r¬ a s¬l′). By definition of♦a ,M |= ∗(♦a pl ⇒
a r♦a sl′). Therefore, if ∗(l ⇒ a l′) is satisfiable, so it is ∗(♦a pl ⇒
a r♦a sl′). Thus, RESp,1,r,sa is sound.

Lemma 2. RESp,0,r,sa is sound.

Proof. Let M = (W, w0, π,R1, . . . ,Rn) be a model such that M |=
∗(C ⇒ ♦a pl′). By the semantics of the universal operator, for all w ∈

W , 〈M, w〉 |= C ⇒ ♦a pl′. By Gp,0,r,s
a , we have that, for all w ∈ W ,

〈M, s〉 |= ♦a pl′ ⇒ a r♦a sl′. By classical reasoning, we obtain 〈M, w〉 |=
(C ⇒ a r♦a sl′), for all w ∈ W . By the semantics of the universal operator,
〈M, w〉 |= ∗(C ⇒ a r♦a sl′), for all w ∈ W . So, 〈M, w0〉 |= ∗(C ⇒
a r♦a sl′) and, by definition of satisfiability,M |= ∗(C ⇒ a r♦a sl′). There-

fore, if ∗(C ⇒ ¬ a ¬l′) is satisfiable, so it is ∗(C ⇒ a r♦a sl′). Thus,
RESp,0,r,sa is sound.

Termination is ensured by the fact that a given set of clauses contains only
finitely many propositional symbols, from which only finitely many SNFK
clauses can be constructed and therefore only finitely many new SNFK clauses
can be derived. Note that, as the resolution rules RESp,q,r,sa cannot be applied to
clauses which would result in nested definition symbols, all the corresponding
definition clauses can be introduced at the beginning of the proof.

Completeness is proved by showing that if a given set of clauses is unsatisfiable,
there is a refutation produced by the method presented here. The proof is by
induction on the number of nodes of a graph, known as behaviour graph, built
from a set of clauses. We prove that an empty behaviour graph corresponds to
an unsatisfiable set of clauses and that, in this case, there is a refutation using
the inference rules given in Section 3 and Table 2. The graph construction is
similar to the construction of a canonical model, followed by filtrations based
on the set of formulae (or clauses), often used to prove completeness for proof
methods in modal logics (see [?], for instance, for definitions and examples).
Intuitively, nodes in the graph correspond to states. Recall that for logics of
confluence, the resolution calculus introduces a set of literals, which are used in
the inference rules as new names for modal literals in the scope of the operator
¬ a ¬, a ∈ A. Therefore, nodes are defined as maximally consistent sets of
literals and modal literals occuring in the set of clauses, including those literals
introduced by definition clauses. That is, for any literal l occurring in the set of
clauses and agents a ∈ A, a node contains either l or ¬l; and either a l or ¬ a l.
The set of edges correspond to the agents accessibility relations.

Formally, the graph for n agents is a tuple G = 〈N , E1, . . . , En〉, built from
the set of SNFK clauses T , where N is a set of nodes and each Ea is a set of
edges labelled by a ∈ A. Intuitively, N corresponds to states, i.e., a consistent
set of literals and modal literals occurring in T . There are n types of edges
representing the accessibility relations of each agent in A. An edge labelled by
a ∈ A is called an a-edge. Let η and η′ be nodes. We say that η′ is a-reachable
from η, if there is a sequence of nodes η1, η2, . . . , ηk such that η = η1 and
η′ = ηk and (ηj , ηj+1) ∈ Ea for j = 1, . . . , k− 1. We say that η′ is immediately
a-reachable from η, if (η, η′) ∈ Ea. We say that the k-tuple (η, . . . , η′) ∈ Eka ,
k ∈ N, if there is a sequence of nodes η1, . . . , ηk, η = η1 and η′ = ηk, and for
each ηj , 1 ≤ j ≤ k − 1, we have that (ηj , ηj+1) ∈ Ea. Note that, if k = 0, then
η ∈ E0a , for all η ∈ N and a ∈ A.

First, we define truth of a formula with respect to a set of literals and modal
literals:

Definition 4. Let V be a consistent set of literals and modal literals. Let ϕ, ψ,
and ψ′ be a Boolean combinations of literals and modal literals. We say that V
satisfies ϕ (written V |= ϕ), if, and only if:

– ϕ ∈ V , if ϕ is a literal or a modal literal;
– ϕ is of the form ψ ∧ ψ′ and V |= ψ and V |= ψ′;
– ϕ is of the form ψ ∨ ψ′ and V |= ψ or V |= ψ′;
– ϕ is of the form ¬ψ and V does not satisfy ψ (written V 6|= ψ).

We define satisfiability of a formula and a set of formulae with respect to a node:

Definition 5. Let V be a maximal consistent set of literals and modal literals,
η be a node such that η contains all literals and modal literals in V , ϕ be a
Boolean combination of literals, and χ = {ϕ1, . . . , ϕm} be a set of formulae,
where each ϕi, 1 ≤ i ≤ m, is a Boolean combination of literals. We say that
η satisfies ϕ (written η |= ϕ) if, and only if, V |= ϕ. We say that η satisfies χ
(written η |= χ) if, and only if, η |= ϕ1 ∧ . . . ∧ ϕm.

Let T be a set of clauses into SNFK . We construct a finite direct graph G =
〈N , E1, . . . , En〉 for T , whereN is a set of nodes and each Ea is a set of a-edges,
as follows. A node η ∈ N is a maximal consistent set of literals and modal
literals, that is, it satisfies either a proposition or its negation; and it satisfies
either a modal literal or its negation. Firstly, we delete any nodes that do not
satisfy the literal clauses in T , that is, if ∗(true ⇒ l1 ∨ . . . ∨ lm) ∈ T , we
delete the nodes η ∈ N such that η 6|= l1 ∨ . . . ∨ lm. This ensures that literal
clauses are satisfied by any node in G. We also delete any nodes η such that
η |= posa,l, but η 6|=♦a l. That is, we have that posa,l ∈ V if and only if♦a l ∈ V
This ensures that all definition clauses are satisfied by all nodes in G.

Let the initial states of the graph be those which satisfy all the right-hand
sides of initial clauses. If all initial states are deleted, then the graph is empty.

Given a non-empty set of nodes, we construct the set of a-edges, Ea, as
follows. First, for each node η and for each agent a ∈ A, let Cηa ⊆ T be the set
of positive a-clauses corresponding to agent a, that is, the clauses of the form
∗(l ⇒ a l′), where l and l′ are literals, whose left-hand side are satisfied

by η. Let Lηa be the set of literals in the scope of a on the right-hand side
from the clauses in Cηa, that is, if ∗(l ⇒ a l′) ∈ Cηa, then l′ ∈ Lηa. Build
an a-edge from η to all the nodes η′ that satisfy Lηa. Observe that when Cηa is
empty, then Lηa is also empty. As an empty set of literals is satisfied in any node,
there is an a-edge from η to every node in the graph, in order to ensure that the
tautology true ⇒ a true is satisfied. Note that this construction ensures that
all positive a-clauses in T are satisfied. Next, consider any nodes that do not
satisfy the negative a-clauses in T . For each node η and for each agent a ∈ A,
if ∗(l ⇒ ¬ a l′) is in T , η |= l and there is no a-edge between η and a node
that satisfies ¬l′, then η is deleted.

The graph obtained after performing all possible deletions is called reduced
behaviour graph.

We first show that a set of clauses is satisfiable if, and only if, the reduced
graph for this set of clauses is non-empty.

Theorem 1. Let T be a set of clauses. T is satisfiable in K(n) if and only if the
reduced behaviour graph G constructed from T is non-empty.

Proof. (⇒) Assume that T is a satisfiable set of clauses. If we construct a graph
from T , we generate a node for each each maximal consistent set of literals
and modal literals. Nodes are deleted only if they do not satisfy the set of lit-
eral clauses or definition clauses. Then we construct a-edges from each node
to every other node, only deleting edges if the right-hand side of some positive
a-clause is not satisfied. Similarly nodes are deleted if negative a-clauses cannot
be satisfied. Hence a satisfiable set of clauses will result in a non-empty graph.

(⇐) Assume that the reduced graph G = 〈N , E1, . . . , En〉 constructed from
T is non-empty. To show that T is satisfiable we construct a modelM from G.
LetM = 〈W, π,R1, . . . ,Rn〉. Given the set of propositions occuring in the set
of clauses T , PT , let si ∈ N , where 0 6 i 6 2|PT | − 1, there is a function
node : N → W mapping each consistent set of literals and modal literals to
names of nodes such that node(η′) = s0 for η′ some initial node and each node
is mapped to a different name. Let Ra = Ea and let π(sj)(p) = true if, and
only if, node(η) = sj and p ∈ η.

Theorem 2. Let T be an unsatisfiable set of clauses in K(n). A contradiction
can be derived by applying the resolution rules given in Section 3.

Proof. Given a set of clauses T , construct a reduced behaviour graph as de-
scribed above.

First assume that the initial and literal clauses are unsatisfiable. Thus all
initial nodes will be removed from the reduced graph and the graph becomes
empty. From the completeness of classical resolution there is a series of resolu-
tion steps which can be applied to the right-hand side of these clauses which
lead to the derivation of false. We can mimic these steps by applying the
IRES1, IRES2 or LRES resolution rules to the initial and literal clauses to derive
start⇒ false or true⇒ false.

Next, if the non-reduced graph is not empty, consider any nodes that do not
satisfy the negative a-clauses in T . For each node η and for each agent a ∈ A,
if ∗(l ⇒ ¬ a l′) is in T , η |= l and there is no a-edge between η and a node
that satisfies ¬l′, then η is deleted.

Let Cηa in T be the set of positive a-clauses corresponding to agent a, that
is, the clauses of the form ∗(lj ⇒ a l′j), where lj and l′j are literals, whose
left-hand side are satisfied by η. Let Lηa be the set of literals in the scope of a

on the right-hand side from the clauses in Cηa, that is, if ∗(lj ⇒ a l′j) ∈ Cηa,
then l′j ∈ Lηa. From the construction of the graph, for a clause ∗(l⇒ ¬ a l′),
if η |= l but there is no a-edge to a node containing ¬l′, it means that ¬l′, Lηa,
and the right-hand side of the literal clauses must be contradictory.

First assume that ¬l′ and Lηa is contradictory. Then, Cηa in T contains a
clause as ∗(l1 ⇒ a l′) where, from the definition of Ca, η |= l1. Thus, by

an application of MRES to this clause and l ⇒ ¬ a l′, we derive ∗(true ⇒
¬l1 ∨ ¬l) and η is removed as required.

Next assume thatLηa itself is contradictory. This means there must be clauses
of the form ∗(l1 ⇒ a l′′), ∗(l2 ⇒ a ¬l′′) ∈ Cηa, where η |= l1 and
η |= l2. Thus we can apply GEN2 to these clauses and the negative modal
clause l ⇒ ¬ a l′ deriving ∗(true⇒ ¬l1 ∨ ¬l2 ∨ ¬l). Hence the addition of
this resolvent means that η will be deleted as required.

Next assume that ¬l′ and the right-hand side of the literal clauses are con-
tradictory. The case where the right-hand sides of the literal clauses themselves
are contradictory has been covered above (by applying LRES). By applying
LRES to the set of literal clauses, we obtain ∗(true ⇒ l′) and use this with
∗(l ⇒ ¬ a l′) to apply GEN1 and generate ∗(true ⇒ ¬l) which will

delete η as required.
If Lηa and the right-hand side of literal clauses all contribute to the contra-

diction (but not ¬l′), applying GEN3 to the relevant clauses will delete η as
required.

Finally we assume that ¬l′ and Lηa and the right-hand side of the literal
clauses all contribute to the contradiction. Thus, similarly to the above, applying
GEN1 to the relevant clauses will delete η as required.

Summarising, IRES1, IRES2 and LRES remove from the graph nodes re-
lated to contradictions in the set of literal clauses. The rule MRES also simulates
classical resolution, removing from the graph those nodes related to contradic-
tion within the set of modal literals. The inference rule GEN1 deletes parts of the
graph related to contradictions between the literal in the scope of ¬ a ¬, the set
of literal clauses, and the literals in the scope of agent. The resolution rule GEN2
deletes parts of the graph related to contradictions between the the literals in the
scope of agent. Finally, GEN3 deletes parts of the graph related to contradictions
between the the literals in the scope of agentand the set of literal clauses. These
are all possible combinations of contradicting sets withing a clause set.

If the resulting graph is empty, the set of clauses T is not satisfiable and
there is a resolution proof corresponding to the deletion procedure, as described
above. If the graph is not empty, it provides a model for the satisfiable set of
clauses T .

After exhaustively appling deletions to the graph, if the graph is empty, by
completeness of RESK, there is a proof by the resolution rules shown in Sec-
tion 3. If the graph is not empty, we have to check whether we can build a
model for T , where Gp,q,r,s

a holds. The fact that this is possible is given by the
following lemmas.

Lemma 3. Let T be an unsatisfiable set of clauses in reflexive systems. A con-
tradiction can be derived by applying the resolution rules given in Section 3 and
RES0,1,0,0

a .

Proof. Consider any normal modal logic where each binary relation Ra is re-
flexive. We construct a graph G = 〈N , E1, . . . , En〉 for K(n) as described above.
We show that by applying the resolution rule RES0,1,0,0

a any non-reflexive node
is deleted. Consider a node η and a ∈ A and (η, η) 6∈ Ea. There are two options:
there are no a-edges out of η; or a-edges lead from η but there is no a-edge from
η to itself.

For the former, from the construction of the graph G, we have tried to
construct as many edges as possible. That is there must be some a-clauses
of the form ∗(l′1 ⇒ a l1), ∗(l′2 ⇒ a l2), . . . , ∗(l′k ⇒ a lk), such
that for each j = 1, . . . , k, η |= l′j and either

∧
j lj is contradictory (e.g.

when lj = ¬lh for j, h = 1, . . . , k) or when
∧
j lj and the set of clauses

from the right-hand side of the literal clauses is contradictory. Note that we
assume that this node does not have any unsatisfied negative a-clauses as such
a node would have been previously deleted by the related deletion rule. For
the case

∧
j lj is contradictory there must be two clauses ∗(l′1 ⇒ a l1) and

∗(l′2 ⇒ a ¬l1) such that η |= l′1 and η |= l′2. Applying RES0,1,0,0
a to each we

obtain ∗(true⇒ ¬l′1∨l1) and ∗(true⇒ ¬l′2∨¬l1) and by applying LRES
we can obtain ∗(true⇒ ¬l′1 ∨ ¬l′2). Adding this to the graph deletes η. The
case where

∧
j lj and the set of clauses from the right-hand side of the literal

clauses is contradictory is similar. By the completeness of classical resolution
we can again derive a clause that removes η.

Next consider the second case for some node η. As we have attempted to
construct as many edges as possible from every node there must be a clause
∗(l′1 ⇒ a l1) such that η |= l′1 and η 6|= l1. By applying RES0,1,0,0

a we obtain
∗(true⇒ ¬l′1 ∨ l1). As η 6|= ¬l′1 ∨ l1, η is deleted as required.
Note that RES0,0,0,1

a is not required for completeness as it can be simulated
by other inference rules. Assume that ∗(true ⇒ D ∨ l) is in T . Recall that
for all literals l occurring in T , the definition clauses ∗(posa,l ⇒ ¬ a ¬l) and
∗(¬posa,l ⇒ a ¬l) are also in T . Applying RES0,1,0,0

a to ∗(¬posa,l ⇒
a ¬l) results in ∗(true ⇒ posa,l ∨ ¬l). Applying LRES to ∗(true ⇒
posa,l ∨¬l) and ∗(true⇒ D ∨ l) results in ∗(true⇒ D ∨ posa,l), which
is semantically equivalent to ∗(¬D ⇒ ¬ a ¬l), the resolvent of RES0,0,0,1

a

from ∗(true⇒ D ∨ l).

Lemma 4. Let T be an unsatisfiable set of clauses in modally banal systems. A
contradiction can be derived by applying the resolution rules given in Section 3
and RES1,0,0,0

a .

Proof. Consider any normal modal logic where each binary relation Ra is
modally banal. We construct a graph G = 〈N , E1, . . . , En〉 for K(n) as described
above. We show that by applying the resolution rule RES1,0,0,0

a any node that
does not satisfy the frame conditions is deleted. Consider a node η and a ∈ A,
(η, η′) ∈ Ea, but η 6= η′.

First note that if η 6= η′, there must be a literal l such that η |= l and η′ 6|= l.
As there is an edge from η to η′, we have that η |= posa,¬l. Applying RES1,0,0,0

a

to ∗(posa,¬l ⇒ ¬ a l) we obtain ∗(true ⇒ ¬posa,¬l ∨ ¬l), which is not
satisfied in η. Therefore, η is deleted as required.

Assume that ∗(l ⇒ ¬ a ¬l′) ∈ T and η |= l. As all modal negative
modal clauses are satisfied in the graph, there must be an edge (η, η) in Ea,
otherwise the node would have been removed. If η 6|= l′, by adding ∗(true⇒
¬l ∨ l′), the resolvent of RES1,0,0,0

a from ∗(l ⇒ ¬ a ¬l′), we have that η is
deleted. This deletion corresponds to applications of LRES to ∗(true ⇒
¬l ∨ l′) and the set of literal clauses that together imply ¬l′.

Note that RES0,0,1,0
a is not required for completeness as it can be simulated

by other inference rules. Assume that ∗(true ⇒ D ∨ l) is in T . Recall that
for all literals l occurring in T , the definition clause ∗(posa,¬l ⇒ ¬ a l) is
also in T . Applying RES1,0,0,0

a to ∗(posa,¬l ⇒ ¬ a l) results in ∗(true⇒
¬posa,¬l ∨ ¬l). Applying LRES to ∗(true ⇒ D ∨ l) and ∗(true ⇒
¬posa,¬l ∨ ¬l) results in ∗(true ⇒ D ∨ ¬posa,¬l), which is semantically
equivalent to ∗(¬D ⇒ a l), the resolvent of RES0,0,1,0

a from ∗(true ⇒
D ∨ l) is in T .

Lemma 5. Let T be an unsatisfiable set of clauses in symmetric systems. A
contradiction can be derived by applying the resolution rules given in Section 3
and RES1,1,0,0

a .

Proof. Consider any normal modal logic where each binary relationRa is sym-
metric. We construct a graph G = 〈N , E1, . . . , En〉, as described for K(n). We
show that by applying the inference rule RES1,1,0,0

a any non-symmetric edge
between two nodes is deleted. Consider any pair of nodes η and η′ such that
there is some a ∈ A and (η, η′) ∈ Ea but (η′, η) 6∈ Ea.

From the construction of the graph G, we have tried to construct as many
edges as possible. That is, there must be some positive a-clause of the form
∗(l′ ⇒ a l), such that η′ |= l′ and η 6|= l (i.e. η |= ¬l). Applying RES1,1,0,0

a ,
we obtain ∗(¬l ⇒ a ¬l′). As η |= ¬l and η′ |= l′, from the construction of
the graph, the resolvent of SYM removes the edge (η, η′) from Ea as required.

Note that RES0,0,1,1
a is not required for completeness of the proof method

for symmetric systems. Assume that ∗(true ⇒ D ∨ l) is in T . By apply-
ing RES0,0,1,1

a to ∗(true ⇒ D ∨ l) we obtain ∗(¬D ⇒ a posa,l), which

removes from the graph all edges from nodes that satisfy ¬D to nodes that do
not satisfy posa,l. Assume (η, η′) ∈ Ea, where η |= ¬D, but η′ 6|= posa,l. If
η′ 6|= posa,l, then there must be a clause ∗(l1 ⇒ a ¬l), such that η′ |= l1
and all edges from η′ to nodes which satisfy l were removed during the con-
struction of the graph. By applying RES1,1,0,0

a to ∗(l1 ⇒ a ¬l) we ob-
tain ∗(¬l ⇒ a ¬l1). Applying MRES to this and to the definition clause
∗(posa,l1 ⇒ ¬ a ¬l1), we obtain ∗(true ⇒ ¬l ∨ ¬posa,l1). Applying

LRES to ∗(true ⇒ D ∨ l) and ∗(true ⇒ ¬l ∨ ¬posa,l1), we obtain
∗(true ⇒ D ∨ ¬posa,l1), which removes the edges from η, which satisfies

¬D, to η′, which satisfies l1. Therefore, RES0,0,1,1
a is not needed for complete-

ness.

Lemma 6. Let T be an unsatisfiable set of clauses in serial systems. A contra-
diction can be derived by applying the resolution rules given in Section 3 and
RES0,1,0,1

a .

Proof. Consider any normal modal logic where each binary relation Ra is se-
rial. We construct a graph G = 〈N , E1, . . . , En〉 for K(n), as described before.
We show that by applying the resolution rule RES0,1,0,1

a any non-serial node is
deleted. Consider any node η such that there is some a ∈ A and there is no η′

such that (η, η′) ∈ Ea.
From the construction of the graph G, we have tried to construct as many

edges as possible. That is there must be positive a-clauses of the form ∗(l′1 ⇒
a l1), ∗(l′2 ⇒ a l2), . . . , ∗(l′k ⇒ a lk), such that for each j = 1, . . . , k,
η |= l′j but no node satisfies both

∧
j lj and the set of literal clauses. By applying

RES0,1,0,1
a , we add ∗(l′j ⇒ ¬ a ¬lj) for j = 1, . . . , k. From the construction

of the graph η does not satisfy these clauses and η is removed. Applying MRES,
GEN1, GEN2 or GEN3 (as described in the completeness argument for K(n))
will achieve the deletion of η.

Lemma 7. Let T be an unsatisfiable set of clauses in 5−1 systems. A contra-
diction can be derived by applying the resolution rules given in Section 3 and
RES0,1,1,1

a .

Proof. Consider any normal modal logic where each binary relationRa respects
the frame conditions for G1,1,1,0

a . We construct a graph G = 〈N , E1, . . . , En〉
for K(n) as described above. We show that by applying the resolution rule
RES0,1,1,1

a any edge that does not satisfy the frame conditions is deleted.
Consider nodes η, η′ in Ea for some a ∈ A, where (η, η′) ∈ Ea, but

there is no η′′ such that (η, η′′) and (η′, η′′) are in Ea. If there is no such η′′,
then Lηa ∪ Lη

′
a is contradictory. Thus, there must be clauses ∗(l1 ⇒ a l)

and ∗(l2 ⇒ a ¬l) such that η |= l1 and η′ |= l2. Recall that the defini-
tion clause ∗(posa,l ⇒ ¬ a ¬l) is in the set of clauses. Applying MRES
to ∗(posa,l ⇒ ¬ a ¬l) and ∗(l2 ⇒ a ¬l) results in ∗(true ⇒ l2 ∨
¬posa,l). Applying RES0,1,1,1

a to ∗(l1 ⇒ a l) results in ∗(l1 ⇒ a posa,l).
As ∗(posa,l2 ⇒ ¬ a l2) is in the set of clauses, by applying GEN1 to
∗(l1 ⇒ a posa,l), ∗(posa,l2 ⇒ ¬ a l2), and ∗(true⇒ l2∨¬posa,l) we

obtain ∗(true ⇒ ¬l1 ∨ ¬posa,l2), which is equivalent to ∗(l1 ⇒ a ¬l2),
which removes the edge (η, η′) as required.

Note that RES1,1,0,1
a is not required for completeness. Assume that ∗(l⇒

a l′) is in the set T of clauses. Applying RES1,1,0,1
a to ∗(l ⇒ a l′) results

in ∗(posa,l ⇒ ¬ a ¬l′), which removes from the graph all nodes that sat-
isfy posa,l but do not satisfy ¬ a ¬l′. Assume (η, η′) ∈ Ea, where η′ |= l. By
construction of the graph, as (η, η′) ∈ Ea, we have that η |= posa,l.

If there are no edges out of η′, then, by construction of the graph, we have
that η′ |= ¬posa,l′ . Now, applying RES0,1,1,1

a to ∗(l ⇒ a l′) results in
∗(l ⇒ a posa,l′). As η′ 6|= posa,l′ , the edge (η, η′) is removed from the

graph. As posa,l′ is no longer satisfied at η, η is removed from the graph.
If there are edges (η′, η′′) ∈ Ea, but there are no edge (η, η′′), then there

must be a clause as ∗(l1 ⇒ a l2) such that η |= l1 and η′′ 6|= l2. Moreover, η′

satisfies a ¬l2 and ¬posa,l2 , otherwise the edge relation would meet the frame
conditions for 5−1 systems. Applying RES0,1,1,1

a to ∗(l1 ⇒ a l2) results in
∗(l1 ⇒ a posa,l2). As η′ 6|= posa,l2 , the edge (η, η′) is removed from the

graph. Because posa,l is no longer satisfied at η, the node is removed from the
graph.

We disallow the application of RES0,1,1,1
a to clauses whose right-hand

sides are of the form a posa,l′ . Applying RES0,1,1,1
a to a clause as ∗(l ⇒

a posa,l′) is not necessary for completeness and might cause the method to be
non terminating, as an unrestricted number of nested literals as posa,posa,l′ could
be generated. Assume that ∗(l ⇒ a posa,l′) is in the set of clauses and that
there is a node η such that η |= l. If there are no edges out of η, then we have
that both posa,posa,l′ and posa,l′ are not satisfied at η. If there is a node η′, such
that (η, η′) in Ea, then by construction of the graph we have that η′ |= posa,l′ ,
otherwise the edge (η, η′) would have been removed from the graph. There are
several cases:

1. If ∗(l ⇒ a posa,l′) was obtained by an application of RES0,1,1,1
a to the

clause ∗(l⇒ a l′), we have that η |= a posa,l′ . As (η, η′) ∈ Ea, we have
that η′ |= posa,l′ and, by construction of the graph, we also have that there
must exist a node η′′ such that both (η, η′′) and (η′, η′′) are in Ea, otherwise
the frame conditions for 5−1 would not have been met and we would have

the edge (η, η′) would have been removed from the graph. As ∗(l ⇒
a posa,l′) is in T , η |= l, and (η, η′′) ∈ Ea, we have that η′′ |= posa,l′ .

As (η′, η′′) ∈ Ea, we have that η′′ |= ¬ a ¬posa,l′ , that is, posa,posa,l′ holds
exactly where posa,l′ holds.

2. If ∗(l ⇒ a posa,l′) was obtained by an application of RES1,0,1,1
a to the

clause ∗(l ⇒ ¬ a ¬l′), then posa,l′ holds at η. Because (η, eta′) there
must exist a node η′′ such that both (η, η′′) and (η′, η′′) are in Ea, otherwise
the frame conditions for 5−1 would not have been met and we would have
the edge (η, η′) would have been removed from the graph. As ∗(l ⇒
a posa,l′) ∈ T , η |= l, and (η, η′′) ∈ Ea, we have that η′′ |= posa,l′ .

As (η, η′′) ∈ Ea, we have that η |= ¬ a ¬posa,l′ , that is, posa,posa,l′ holds
exactly where posa,l′ holds.

3. If ∗(posa ⇒ a posa,l′) was obtained by an application of RES1,1,1,1
a to

the clause ∗(l⇒ a l′): to be continued.
4. If ∗(l ⇒ a posa,l′) was obtained by an application of RES1,1,0,0

a to the
clause ∗(¬posa,l ⇒ a ¬l): to be continued.

Lemma 8. Let T be an unsatisfiable in functional systems. A contradiction can
be derived by applying the resolution rules given in Section 3 and RES1,0,1,0

a .

Proof. Consider any normal modal logic where each binary relationRa is func-
tional. We construct a graph G = 〈N , E1, . . . , En〉 for K(n) as described above.
We show that by applying the resolution rule RES1,0,1,0

a any edge that does not
satisfy the frame conditions is deleted. Consider nodes η, η′, and η′′ in Ea for
some a ∈ A, where (η, η′), (η, η′′) ∈ Ea, but η′ 6= η′′.

If η′ 6= η′′, then there must be a literal, say l, such that η′ |= l and η′′ 6|= l.
Because (η, η′) ∈ Ea and η′ |= l, we have that η |= posa,l. By construction,
all nodes satisfy the definition clauses. In particular, η |= posa,l ⇒ ¬ a ¬l.
Applying RES1,0,1,0

a to ∗(posa,l ⇒ ¬ a ¬l) results in ∗(posa,l ⇒ a l).
By construction of the graph, as η′′ |= ¬l, the edge (η, η′′) is removed from the
graph, as required.

Lemma 9. Let T be an unsatisfiable set if clauses in Euclidean systems. A con-
tradiction can be derived by applying the resolution rules given in Section 3,
RES1,0,1,1

a , and RES1,1,1,0
a .

Proof. Consider any normal modal logic where each binary relation Ra is Eu-
clidean. We construct a graph G = 〈N , E1, . . . , En〉, as described in Subsec-
tion A for K(n). We show that by applying the rules RES1,0,1,1

a and RES1,1,1,0
a

any non-Euclidean edges are deleted.
Suppose that ∗(l1 ⇒ ¬ a ¬l) is in the set of clauses. Then, there must

be nodes η and η′ ∈ N , such that (η, η′) ∈ Ea, η |= l1, and η′ |= l (otherwise

the negative a-clause would not be satisfied and η would have been removed
during the graph construction). Now, suppose that there is no a-edge from η′ to
a node η′′ that satisfies l. Then, the a-edge relation is not Euclidean, because
a ¬ a ¬l does not hold at η. Applying the rule RES1,0,1,1

a , we obtain the clause
∗(l1 ⇒ a posa,l). Because η |= l1, we obtain, η |= a posa,l. Therefore, by

construction of the graph, any edges from η to nodes that do not satisfy posa,l
are removed from the graph. In particular, as η′ 6|= posa,l, the edge (η, η′) is
removed from the graph, as required.

Consider nodes η, η′, η′′ ∈ N such that (η, η′) and (η, η′′) are a-edges in
Ea, but (η′, η′′) is not an a-edge in Ea. Thus the a-edge relation is not Eu-
clidean. From the graph construction we have tried to construct as many edges
as possible, so there must be a clause of the form ∗(l1 ⇒ a l2) such that
η′ |= l1 and η′′ 6|= l2. Applying the rule RES1,1,1,0

a , we obtain the clause
∗(posa,l1 ⇒ a l2). Observe that as η′ |= l1, then η |= ¬ a ¬l1; therefore,

η |= posa,l1 . From this and from ∗(posa,l1 ⇒ a l2), we have that η |= a l2.
Thus, the a-edge from η to η′′ is removed (as η′′ 6|= l2) and the a-edge relation
becomes Euclidean.

Lemma 10. Let T be an unsatisfiable set of clauses in convergent systems. A
contradiction can be derived by applying the resolution rules given in Section 3
and RES1,1,1,1

a .

Proof. Assume the behaviour graph G = 〈N , E1, . . . , En〉 for T is not empty.
If T is satisfiable in G1,1,1,1

a , by correspondence theory, we have that for all η
in G, a ∈ A, if (η, η′) and (η, η′′) ∈ Ea, then there exists η′′′ such that both
(η′, η′′′) and (η′′, η′′′) are in Ea. We show next that nodes that do not satisfy this
condition have edges deleted from the graph and that these deletions correspond
to applications of the inference rule RES1,1,1,1

a . There are two cases:

1. If there is no η′′′ such that (η′, η′′′) ∈ Ea, then by the graph construc-
tion there must be a clause as ∗(l1 ⇒ a l2) such that η′ |= l1, but
η′′′ 6|= l2. By applying RES1,1,1,1

a to ∗(l1 ⇒ a l2), we introduce
∗(posa,l1 ⇒ a posa,l2) to the set of clauses. Now, because η′ |= l1,

we have that η |= posa,l1 . By the semantics of the implication, we have that
η must satisfy a posa,l2 . Now, η′′ cannot satisfy posa,l2 , as if this was the
case, there should be a node that would be the successor of both η′ and η′′.
Therefore, the edge (η, η′′) is removed from the graph.

2. If there is no η′′′ such that (η′′, η′′′) ∈ Ea, then by the graph construction
there must be a clause as ∗(l1 ⇒ a l2) such that η′ |= l1, but η′′′ 6|= l2.
By applying the inference rule RES1,1,1,1

a to ∗(l1 ⇒ a l2), we introduce
posa,l1 ⇒ a posa,l2 to the set of clauses. Reasoning as above, the edge
(η, η′) is removed from the graph.

Theorem 3. Let T be an unsatisfiable set of clauses in Gp,q,r,s
a . A contradiction

can be derived by applying the resolution rules given in Section 3 and Table 2.

Proof. By Lemmas 3, 4, 5, 6, 7, 8, 9, and 10.

