Modal Logic: Overview

Claudia Nalon

Department of Computer Science
University of Brasilia

LMU, The Modal Logic Sessions

The Basics

The first session

e Modal logics: syntax and semantics

e Invariance results: for K,,, the class of models is restricted to finite
trees.

e Decidability: PSPACE-complete

C. Nalon Minchen, 31/10/2023

Calculi for Modal Logics

The second session

e Axiomatisations for monomodal logic K,
e Prefixed tableaux for monomodal logic K;
e How these are extended to deal with multimodal logics K,

C. Nalon Minchen, 31/10/2023

Extensions

Some Other Usual Modal Logics

Different restrictions
on the accessibllity
relations R, define
different modal
logics:

e No restrictions:
Kn;
Reflexive: KT,,;
Transitive: K4, ;
Euclidean: K5,,; () —
Serial: KD,;; KB }——
Symmetric: KB,,;
Reflexive and ()
Transitive: S4.,;
e Reflexive and

Euclidean: S5,,;

C. N@lon . . . MUnchen, 31/10/2023

e This is the logic related to transitive relations:

e Syntax is the same as before.
e Semantics is given by a Kripke Structure M for P and
A={1,...,n}is atuple

M — <W7R17'°'7Rn7ﬂ->7
where:

e VW is anon-empty set;
e Foreachae A, R, < W x W, where each R, Is transitive;
e m:WxP —{T,F}.

e The satisfiability relation is defined as before.
e The notions of satisfiability/validity of a formula are defined
exactly as before.

C. Nalon Minchen, 31/10/2023

Frame Characterisation and Axioms

Name | Axiom Frame Property

D “lp — @p | Serial Vodw. R ow

T “lp — Reflexive | Vw. R, ww

B p — [“]yp | Symmetric | Yow. R,ow — Rawv

4 “lp — [¢][*]o | Transitive | Yuvw.(Reouv A Ryow) — Reuw
5 @ — [[J@e | Euclidean | Yuvw.(Rouv A Rouw) — Roow

C. Nalon Minchen, 31/10/2023

Taut enough propositional tautologies.
K (e = o) = (Ll — [2Jo).

SUB Uniform substitution: and
MP If - pand ¢ — v, then |- 9.
Nec If — ¢, then - [¢]p

You can also add:
Dual @gp > D[P

C. Nalon Minchen, 31/10/2023

Taut enough propositional tautologies.

K Llle = 9) = (Lo — [2]Y).
4 [l - [y

SUB Uniform substitution: and
MP If - pand ¢ — v, then |- 9.
Nec If — ¢, then - [¢]p

You can also add:
Dual @gp > D[P

C. Nalon Minchen, 31/10/2023

Taut enough propositional tautologies.

K Llle = 9) = (Lo — [2]Y).
4 [l - [y

B - [y
and

SUB Uniform substitution: and
MP If - pand ¢ — v, then |- 9.
Nec If — ¢, then - [¢]p

You can also add:
Dual @gp > D[P

C. Nalon Minchen, 31/10/2023

We want a proof for 5 (<&»p — [“]<>p) in the system containing the
axioms K, B, and 4. In the following,

o K:[*[(¢p =) — ([lp — [=]¥)
e B:p—o [0y
o 4:[p — []ay
e chaining: ((¢ — ¥) A (¥ = x)) = (¢ = X)
1. [-p — E=]—p 4, ¢ = —p]
2. p — op ‘contrapositive,1]
3. [H(®©p— ©p) NEC, 2]
1. l@op— @p) — oo - [ep) [K p=@p, ¢ = op]
5. @@p — []op MP,3,4]
6. ©p— [B, ¢ = ©p]
7. <p— ['Chaining,6,5]

Note that because we have uniform substitution, replacing p in the
conclusion gives us all instances of 5.

C. Nalon Minchen, 31/10/2023

Q 5] y 0
o:pAY oL lp o:
o o.1: Y o.1: Y
; for all existing 0.2 | for a fresh .1

C. Nalon Minchen, 31/10/2023

Q 5] y 0
o:pAY oL lp o:

' .0 0.0 :
for all existing 0.2 | for a fresh .1

T D B 4 4r
p=p | L= Qv | =0y o — e
o:l |p o:l |p 0.0 | o:l |p 0.0 |
o:Y o: o:Y 0.0 : | oL
for all existing o.1

Note: For S5 we have (T+4+4r).

C. Nalon Minchen, 31/10/2023

Example: ((Ip A [lg) — CI(Cp A [lg)

(1) 1:(

C. Nalon

D N

q) A Q(O—p v O—g)

[neg. assumption]

Muinchen, 31/10/2023

Example: ((Ip A [lg) — CI(Cp A [lg)

(1) 1:(

C. Nalon

D N

q) A Q(O—p v O—g)

[neg. assumption]

Muinchen, 31/10/2023

(1) 1:(

C. Nalon

p A g) A O(O—p v $—9)

(2) 1:(

D N

Example: ((Ip A [lg) — CI(Cp A [lg)

q)

(8) 1: O(G—p v $—g)

p

q

[neg. assumption]

Muinchen, 31/10/2023

Example: ((Ip A [lg) — CI(Cp A [lg)

(1) 1: (Op A Lg) A O(O—p v O—q) [neg. assumption]
(2) 1: (LlpAldg) [, 1]

(8) 1: O(O—p v O—g)la, 1]

(4) 1:Cp @, 2

(5) 1:[g @, 2]

6) 1.1: O—p v $—q [0, 3]

C. Nalon Minchen, 31/10/2023

(1) 1:(

Example: ((Ip A [lg) — CI(Cp A [lg)

q) A Q(O—p v O—g)

(2) 1:(
(8) 1: G (O—pv O—q)

C. Nalon

a,1
0,1

0,2

@, 2
9, 3]
4,4
4,5

[neg. assumption]

Muinchen, 31/10/2023

Example: ([_Ip A [lg)

(1) 1:(

C. Nalon

— [1(CIp A [g)

q) A Q(O—p v O—g)
(2) 1:(
(8) 1: O(C—p v C—q)l

a, 1
a, 1
0,2
(a2
), 3]
4,4
4,5

O)\‘I.‘I: $—q [, 6]

[neg. assumption]

Muinchen, 31/10/2023

Example: ((Ip A [lg) — CI(Cp A [lg)

(1) 1: (Op A Lg) A O(O—p v O—q) [neg. assumption]

2) 1: (Lp AU0g) |, 1]
(8) 1: G(O—p v O—g)le, 1]

(4) 1:[p e, 2
(5) 1: g a, 2]
1.1: <>ﬁp v &O—q [0, 3]
(7) 1 p |4 41
(8) 1 q 4,8

9) 1.1:<>ﬁp 153, 6] (O)\1.1:<>ﬂq 153, 6]

C. Nalon

Muinchen, 31/10/2023

Example: ([_Ip A [lg)

(1) 1:(

(11) 1.1.1: —p
(12) 111p[

C. Nalon

— [1(CIp A [g)

q) A Q(O—p v O—g)
(2) 1:(
(8) 1: O(C—p v C—q)l

a, 1
a, 1
0,2
(a2
), 3]
4,4
4,5

O)\‘I.‘I: $—q [, 6]

[neg. assumption]

Muinchen, 31/10/2023

Example: ([_Ip A [lg)

(1) 1:(

(11) 1.1.1: —p
(12) 111p[

C. Nalon

— [1(CIp A [g)

q) A Q(O—p v O—g)
(2) 1:(
(8) 1: O(C—p v C—q)l

a, 1
a, 1
0,2
(a2
), 3]
4,4
4,5

O)\‘I.‘I: $—q [, 6]

[neg. assumption]

Muinchen, 31/10/2023

Example: ((Ip A [lg) — CI(Cp A [lg)

(1) 1: (Op A Lg) A O(O—p v O—q) [neg. assumption]
2) 1: (LpAldg) [a,1]
(8) 1: O(G—p v G—g)e, 1]

(4) 1:[p e, 2
(5) 1: g a, 2]
1.1: <>ﬁp v &O—q [0, 3]
(7) 1 p |4 41
(8) 1 q 4,8

9) 1.1: O—p []10)\1.12<>ﬂq[5,6]
(11) 1.1.1: —p [6,9] (13) 1.1.2: —q |9, 10]

(12) 1.1.1:p |7, 7]
X

C. Nalon Minchen, 31/10/2023

Example: ((Ip A [lg) — CI(Cp A [lg)

(1) 1: (Op A Lg) A O(O—p v O—q) [neg. assumption]
2) 1: (LpAldg) [a,1]
(8) 1: O(G—p v G—g)e, 1]

(4) 1:[p e, 2
(5) 1: g a, 2]
1.1: <>ﬁp v &O—q [0, 3]
(7) 1 p |4 41
(8) 1 q 4,8

9) 1.1: O—p []10)\112<>ﬂq[5,6]
(11) 1.1.1: —p [6,9] (1) 1.1.2: —q |9, 10]

(12) 1.11:p [|v,7] (14) 1.1.2:q [v,8]
X

C. Nalon Minchen, 31/10/2023

Example: ((Ip A [lg) — CI(Cp A [lg)

(1) 1: (Op A Lg) A O(O—p v O—q) [neg. assumption]
2) 1: (LpAldg) [a,1]
(8) 1: O(G—p v G—g)e, 1]

(4) 1:[p e, 2
(5) 1: g a, 2]
1.1: <>ﬁp v &O—q [0, 3]
(7) 1 p |4 41
(8) 1 q 4,8

9) 1.1: O—p []10)\112<>ﬂq[5,6]
(11) 1.1.1: —p [6,9] (1) 1.1.2: —q |9, 10]

(12) 1.11:p [|v,7] (14) 1.1.2:q [v,8]
X X

C. Nalon Minchen, 31/10/2023

Termination in K4-Tableaux

p v Op
(1) 1: O=p A 1O —p [neg. assumption]

C. Nalon Minchen, 31/10/2023

Termination in K4-Tableaux

pv QCp

(1) 1: O=p A 1O —p 'neg. assumption]

C. Nalon Minchen, 31/10/2023

Termination in K4-Tableaux

(1) 1: O—p A
(2) 1: GO—p

$—p

(3) 1: IO —p

(4) 1.1: —p

C. Nalon

[, 1]

pv QCp

'neg. assumption]

[a, 1]

[9,2]

Muinchen, 31/10/2023

Termination in K4-Tableaux

(1) 1: G—p A O—p

(2) 1: G—p
(8) 1:JO—p
(4) 1.1: —p
5) 1.1: O—p

C. Nalon

p v <Cp

'neg. assumption]
[, 1]
[, 1]
[9, 2]
[, 3]

Muinchen, 31/10/2023

Termination in K4-Tableaux

pv <O0p

(1) 1: O=p A 1O —p 'neg. assumption]
(2) 1: O—p [, 1
3) 1:O00C—p [a1]
(4) 1.1: —p (5, 2]
(5 11: $—p %3]
6) 1.1: [1C—p [4,3

C. Nalon Minchen, 31/10/2023

Termination in K4-Tableaux

(1) 1: G—p A O—p

(2) 1: O—p
(3) 1: ¢~
(4) 1.1: —p
5) 1.1: O—p
6) 1.1: [—p
(7) 1.1.1: —p
8) 1.1.1: &O—p

9) 1.1.1: 1 —p

C. Nalon

pv QCp

'neg. assumption]

Muinchen, 31/10/2023

Resolution

e Because it is beautiful!

C. Nalon Minchen, 31/10/2023

e Because it is beautiful! It has only one rule, it is sound, it Is
complete, it is easy to implement, proofs are easily checkable, it is
meant for machines...

C. Nalon Minchen, 31/10/2023

e Because it is beautiful! It has only one rule, it is sound, it Is
complete, it is easy to implement, proofs are easily checkable, it is
meant for machines...

e Because it is efficient!

C. Nalon Minchen, 31/10/2023

e Because it is beautiful! It has only one rule, it is sound, it Is
complete, it is easy to implement, proofs are easily checkable, it is
meant for machines...

e Because it is efficient! Well, we should note that theoretical results
show that there are problems for which there are only exponential
size proofs in resolution systems (the pigeonhole formulae). In
practice, however, provers based on resolution (and its variations)
do perform well.

C. Nalon Minchen, 31/10/2023

e Because it is beautiful! It has only one rule, it is sound, it Is
complete, it is easy to implement, proofs are easily checkable, it is
meant for machines...

e Because it is efficient! Well, we should note that theoretical results
show that there are problems for which there are only exponential
size proofs in resolution systems (the pigeonhole formulae). In
practice, however, provers based on resolution (and its variations)
do perform well.

e The calculus for classical logic can be adapted to non-classical
logics. Those calculi are also reasonably simple and they are also
efficient in practice

C. Nalon Minchen, 31/10/2023

C. Nalon

Because it is beautiful! It has only one rule, it is sound, it is
complete, it is easy to implement, proofs are easily checkable, it is
meant for machines...

Because it is efficient! Well, we should note that theoretical results
show that there are problems for which there are only exponential
size proofs in resolution systems (the pigeonhole formulae). In
practice, however, provers based on resolution (and its variations)
do perform well.

The calculus for classical logic can be adapted to non-classical
logics. Those calculi are also reasonably simple and they are also
efficient in practice (or, to be more precise, provers are comparable
to state-of-art provers implementing other calculi).

Muinchen, 31/10/2023

Clausal Resolution for Propositional Logic

e Resolution is a refutational procedure: if we want to prove ¢, we
apply the rules to —.

e Reasoning is performed backwards: from what we want to prove to
axioms (in this case, a contradiction).

e Resolution can be clausal or non-clausal: for clausal resolution, we
transform —y into CNF before applying the inference rule.

e There is only one inference rule:

IRES|] (¢ v 1)
(v v =l
(¢ v)

e Premises are called parent clauses (or the resolvends). The
conclusion is called the resolvent. The literals [and —/ are known as
complementary literals. The parent clauses are resolved on the
complementary literals, generating the resolvent.

e The inference rule is applied until either a contradiction is found or

no new clauses can be generated.

C. Nalon Minchen, 31/10/2023

Procedure

Let I'y be a set of clauses.
1: 1«0
2: repeat
3: Choose c; andc, € I'; suchthatl € ¢; and —1[€ ¢

4: Calculate the resolvent r
5: if r is not redundant then
6: Let ;1 < T U {r}

7: endif

8 1 <— 1+ 1

9: until falsee I'; or I'; ., =T

C. Nalon Minchen, 31/10/2023

Procedure

Let I'y be a set of clauses.
1: 1«0
2: repeat
3: Choose c; andc, € I'; suchthatl € ¢; and —1[€ ¢

4: Calculate the resolvent r
5: if r is not redundant then
6: Let ;1 < T U {r}

7: endif

8 1 <— 1+ 1

9: until falsee I'; or I'; ., =T

C. Nalon Minchen, 31/10/2023

Procedure

Let I'y be a set of clauses.
1: 1«0
2: repeat
3: Choose c; andc, € I'; suchthatl € ¢; and —1 € ¢

4: Calculate the resolvent r
5: if r is not redundant then
6: Let ;1 < T U {r}

7: endif

8 1 <— 1+ 1

9: until falsee I'; or I'; ., =T

C. Nalon Minchen, 31/10/2023

Procedure

Let I'y be a set of clauses.
1: 1«0
2: repeat
3: Choose c; andc, € I'; suchthatl € ¢; and —1 € ¢

4: Calculate the resolvent r
5. 1f r is not redundant then
6: Let ;1 « T U {r}

7: endif

8 1 <— 1+ 1

9: until falsee I'; or I'; ., =T

C. Nalon Minchen, 31/10/2023

CNF

C. Nalon

A literal is a propositional symbol or its negation.
A clause is a disjunction of literals.
A formula of the form

n m

AN

i=1 j=1

IS in conjunctive normal form (CNF).

-

Let ¢ € WFF.
There is ¢ € WFF, ¢ == ¢ and ¢’ is in CNF.

.

Muinchen, 31/10/2023

The usual rewritring rules

e Combinatorial explosion:

(LA oA ly) v (kL Ao AKky) = O(m xn)

e In general:

0 w(t) w()
S RAREENANZY 2?21 w(%) H?:1 w(%)
©1V ...V Py [w(e:) i W(ps)
L1 — P2 w(p1)w(p2) w(p1) + w(p2)
p1 < 2 | wlp)w(wz) + w(p1)w(ps) | wle)w(ez) + w(p1)w(es)
—(w(¢p) w(p)
atomic 1 1

C. Nalon Minchen, 31/10/2023

e We introduce new literals which replace subformulae;
e We also need to introduce the definition clauses for those literals.
Let © be the formula to be replaced:

Pol(¢) >0 = new, — ¢
Pol(p) <0 = ¢ — new,
Pol(p) =0 = new, < ¢

C. Nalon Minchen, 31/10/2023

e We introduce new literals which replace subformulae;
e We also need to introduce the definition clauses for those literals.
Let © be the formula to be replaced:

Pol(¢) >0 = new, — ¢
Pol(p) <0 = ¢ — new,
Pol(p) =0 = new, < ¢

Let o € WFF. Thereis ¢ € WFF, ¢’ is in CNF,
and ¢’ is satisfiable if, and only if, ¢ is satisfiable.
Moreover, size(¢’) = O(size(yp)).

C. Nalon Minchen, 31/10/2023

(anbA f)yviieandne)

C. Nalon Minchen, 31/10/2023

(anbA f)viieandAne)

NEWgnaba f) V NEW(cadne)

neWgabaf) — (A ADA f) neweadrey = (¢ A d Ae)

C. Nalon Minchen, 31/10/2023

(anbA f)viieandAne)

NEWgnaba f) V NEW(cadne)

NeWgabaf) — (A A DA f) neWendne) = (¢ A d A e)

ﬁnew(a/\b/\f) VvV a ﬁnew(c/\dw) VvV C
—NEW(gabnf) V b —NEW(cadne) V d
—NEW(gnbnf) V | —NEW(cadne) V €

C. Nalon Minchen, 31/10/2023

C. Nalon Minchen, 31/10/2023

C. Nalon Minchen, 31/10/2023

C. Nalon Minchen, 31/10/2023

(tirvis) Attt > DpAgGAT)A(ts > SAT AU

(trvie) A(trvp)A(tiv g A(ttvr)A(tavs) Altavit) A (te v u)

C. Nalon Minchen, 31/10/2023

More on Renaming

e Renaming ensures that the CNF of a formula has size linear on the
size of that formula.
e Renaming helps separating different contexts for reasoning:

t— OOp

C. Nalon Minchen, 31/10/2023

More on Renaming

e Renaming ensures that the CNF of a formula has size linear on the
size of that formula.
e Renaming helps separating different contexts for reasoning:

L — &Op
L — Sty At — &p

e The above does not preserve the meaning in the modal settings: we
need to say where the renaming is being applied:

t— OOp

C. Nalon Minchen, 31/10/2023

More on Renaming

e Renaming ensures that the CNF of a formula has size linear on the
size of that formula.
e Renaming helps separating different contexts for reasoning:

L — &Op
L — Sty At — &p

e The above does not preserve the meaning in the modal settings: we
need to say where the renaming is being applied:

t— &&p
t — &ty A Fl(t1 — &p)

C. Nalon Minchen, 31/10/2023

Resolution-based Calculi for Modal Logics

There are some few:

Fitting’s destructive resolution for modal logics [Fit90]

Mint’s resolution for modal logics [Mints, 1990]

Farinas de Cerro and colleagues [Far82, dCH88, EdC89, dCH90]
Non-clausal resolution by Abadi & Manna [AM86]

C. Nalon Minchen, 31/10/2023

This was introduced in [ND, 2007].

e We came up with the normal form while investigating techniques for
preprocessing of formulae (prenex and antiprenexing) [ND, 2006]

e The calculus is now referred to as GMR for Global Modal
Resolution, as it uses global renaming.

e Itis quite simple, the propositional and the modal part are
completely separated.

e The (truly) modal rules are hyper-rules.

C. Nalon Minchen, 31/10/2023

The Normal Form

In [ND, 2006, ND, 2007]:

e |nitial clause *

e |iteral clause *

e Positive a-clause *

e Negative a-clause [*

where [, I, [, € L. Positive and negative a-clauses are together known
as modal a-clauses; the index a may be omitted if it is clear from the
context.

C. Nalon Minchen, 31/10/2023

Classical Resolution

[IRES1] [*](true D v)
D’ v —=l)
Dv D"

l

2
2
!

2
2
!

[IRES2] [#

[LRES] [®

IMRES] [F(— [E)
(l;, — @)

* (tI'll€ —> _'ll Vv _'12)

C. Nalon Minchen, 31/10/2023

Modal Resolution |

[GEN1] [y — [2=h)
*ly, — =)
N~ 6-)
*l(true — L1 v...vi, Vv
*(true — —ljv...v =l v =l)

C. Nalon Minchen, 31/10/2023

Modal Resolution |

[GEN1] [y — [2=h)
*ly, — =)
N 6-)
*l(true — 1 v...vi,VvI)
*(true — —ljv...v =l v =l)
a —l

C. Nalon Minchen, 31/10/2023

Modal Resolution |

[GEN1] [y — [2=h)
*ly, — =)
N 6-)
*l(true — 1 v...vi,VvI)
*(true — —ljv...v =l v =l)
a

C. Nalon Minchen, 31/10/2023

Modal Resolution |

[GEN1] [y — [2=h)
*ly, — =)
N 6-)
*l(true — 1 v...vi,VvI)
*|(true — —ljv...v =l v =l)
a . _'l,_'ll,...,_'lm

liv...vi, Vv

C. Nalon Minchen, 31/10/2023

Modal Resolution Il

all)

[GEN2] [F(l

(il — [el=h)
Iy — @)
*(true — =l v =l v =)
|, — [e=ln)
1 - @)
*(true — 1 v ...V i)
*|(true — =l v...v =l v =l)

C. Nalon Minchen, 31/10/2023

Example - NNF - |

(p —q) — (Lp — Llg)

C. Nalon Minchen, 31/10/2023

Example - NNF - |

(p —q) — (Lp — Llg)

We negate the formula:

—(L(p — q) — (Lp — Lg))

C. Nalon Minchen, 31/10/2023

Example - NNF - |

(p —q) — (Lp — Llg)

We negate the formula:

~([p — q) — (Up — Llg))
and rewrite into NNF:

(p — q) A =(Lp — Lq)

C. Nalon Minchen, 31/10/2023

Example - NNF - |

(p —q) — (Lp — Llg)

We negate the formula:

~([p — q) — (Up — Llg))
and rewrite into NNF:

(p — q) A =(Lp — Lq)

(p—q) ~[Ldp A —[g

C. Nalon Minchen, 31/10/2023

Example - NNF - |

(p —q) — (Lp — Llg)

We negate the formula:

~([p — q) — (Up — Llg))
and rewrite into NNF:

(p — q) A =(Lp — Lq)

(p—q) ~[Ldp A —[g

(p—q) A0pA g

C. Nalon Minchen, 31/10/2023

Example - NNF - |

(p —q) — (Lp — Llg)

We negate the formula:

—(L(p — q) — (Lp — Lg))

and rewrite into NNF:

(p — q) A =(Lp — Lq)

(p—q) ~[Ldp A —[g

(0= q) Ap A g
then we apply renaming to start the transformation:

F(start — to) A Fl(to — O(p — q) A Op A O—0)
C. Nalon MUnchen, 31/10/2023

Example - NNF - I

(start—>t0)/(to—> (p—>61)/\ 79/\<>ﬁ61)

we apply rewriting and get:

F(start — to), Fl(to — (0 —), FEl(to — [lp), El(to — $—a)

C. Nalon Minchen, 31/10/2023

Example - NNF - I

(start—>t0)/(to—> (p—>61)/\ 79/\<>ﬁ61)

we apply rewriting and get:

F(start — to), Fl(to — (0 —), FEl(to — [lp), El(to — $—a)

and we are almost there. We just need to apply renaming to the second
formula above:

*|(to — LIt1), *(t1 — (p — q))
and rewrite it in the normal form. We obtain the following set of clauses:

*|(start — tg)

*|(to — LIt1)

*|(true —» —t1 v —p v q)

*|(to — LIp)

C. Nalon *1(tg — <>—'q) Miinchen, 31/10/2023

A Refutation

t() —> tl)
true — —t; v —p Vv q)
to — [Ip)

T 9 =
*
AN TN TN TN N

C. Nalon Minchen, 31/10/2023

A Refutation

(start — %)

(to = LIt1)

*](true — —t; v —p Vv q)
(
(
(

to — [Ip)
to — O —q)
true — —tg) [GEN1,2,4,5, 3]

o B s BY e I
*

C. Nalon Minchen, 31/10/2023

A Refutation

start — %)
t() —> tl)
true — —t; v —p Vv q)

(
(
(
(to — Llp)
(
(
(

to — —q)
true — —tg) [GEN1,2,4,5, 3]
start — false) [IRES1,7,1]

U8y O s Y
*

C. Nalon Minchen, 31/10/2023

Causes of Inefficiency

OO A -p

C. Nalon Minchen, 31/10/2023

Causes of Inefficiency

OO A -p

start — 1
#(ty — Ot1)
(ty — $p)

*|(to — [L1—=p)

= 09I =

C. Nalon Minchen, 31/10/2023

Causes of Inefficiency

OO A -p

start — 1

#(tg — Oty)

“(t; — $p) —LI=p
*|(to — L1—p)

= 09I =

C. Nalon Minchen, 31/10/2023

Causes of Inefficiency

OO A -p

start — 1

#(tg — Oty)

“(t; — $p) —LI=p
*|(to — L1—p)

= 09I =

1 {<><>p A DﬁpJ 0

1.1 $0p |0 1.2|[]-pl0

A

111 Op [121 P |1

1111 P |2

C. Nalon Minchen, 31/10/2023

Causes of Inefficiency

OOp A

—p

1 {<><>p A DﬁpJ 0

11 [O0p 10

111 Op [

1111 P |2

C. Nalon

1.2([]-pl0

A

1.21| 7P |1

= 09I =

start — 1

#(tg — Oty)
“(t; — $p) —LI=p
*|(to — L1—p)

wo| &Gp A O, <><>p,mﬁp}

afor
B

Muinchen, 31/10/2023

References

[Fitting and Mendelsohn, 1998] Fitting, M. and Mendelsohn, R. L.
(1998). First-Order Modal Logic. Synthese Library, 277, Kluwer
Academic Publishers.

[Halpern and Moses, 1992] Halpern, J. Y. and Moses, Y. (1992). A
guide to completeness and complexity for modal logics of knowledge
and belief. Artificial Intelligence, 54(3):319-379.

[Ladner, 1977] Ladner, R. E. The computational complexity of
provability in systems of modal propositional logic. SIAM J. Comput.,
6(3):467—-480.

[Spaan, 1993] Spaan, E. Complexity of Modal Logics. PhD thesis,
University of Amsterdam.

C. Nalon Minchen, 31/10/2023

References

[Fit90] Melvin Fitting. Destructive modal resolution. Journal of Logic
and Computation, 1(1):83-97, July 1990.

[Mints, 1990] Mints, G. Gentzen-type systems and resolution rules, part
|: Propositional logic. Lecture Notes in Computer Science,
417:198-231.

[IND, 2006] Nalon, C. and Dixon, C. Anti-prenexing and prenexing for
modal logics. In Proceedings of the 10th ECAI, Liverpool, UK.

[ND, 2007] Nalon, C. and Dixon, C. Clausal resolution for normal modal
logics. J. Algorithms, 62:117—-134.

C. Nalon Minchen, 31/10/2023

References

[AM86] Martin Abadi and Zohar Manna. Modal Theorem Proving. In
J.H.Siekmann, editor, Proc. CADE-8, volume 230 of Lecture Notes in
Computer Science, pages 172—-189. Springer, 1986.

[Far82] Luis Farinas del Cerro. A simple deduction method for modal
logic. Information Processing Letters, 14(2):49-51, 1982.

[dCH88] Luis Farinas del Cerro and Andreas Herzig. Linear modal
deductions. null, 1988.

[EAC89] Patrice Enjalbert and Luis Farinas del Cerro. Modal resolution
in clausal form. Theoretical Computer Science, 1989.

[dCH90] L. Farinas del Cerro and Andreas Herzig. Automated
qguantified modal logic. null, 1990.

C. Nalon Minchen, 31/10/2023

	The Basics
	The first session

	Calculi for Modal Logics
	The second session

	Extensions
	Some Other Usual Modal Logics
	K4
	Frame Characterisation and Axioms
	Axiomatisation
	Example
	Tableaux
	Example
	Termination in K4-Tableaux

	Resolution
	Why?
	Clausal Resolution for Propositional Logic
	Procedure
	CNF
	The usual rewritring rules
	Renaming
	Example
	Example
	More on Renaming
	Resolution-based Calculi for Modal Logics
	GMR
	The Normal Form
	Classical Resolution
	Modal Resolution I
	Modal Resolution II
	Example - NNF - I
	Example - NNF - II
	A Refutation
	Causes of Inefficiency
	References
	References

