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The Basics



The first session

e Modal logics: syntax and semantics

e Invariance results: for K,,, the class of models is restricted to finite
trees.

e Decidability: PSPACE-complete

C. Nalon Minchen, 31/10/2023



Calculi for Modal Logics



The second session

e Axiomatisations for monomodal logic K,
e Prefixed tableaux for monomodal logic K;
e How these are extended to deal with multimodal logics K,
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Extensions



Some Other Usual Modal Logics

Different restrictions
on the accessibllity
relations R, define
different modal
logics:

e No restrictions:
Kn;
Reflexive: KT,,;
Transitive: K4, ;
Euclidean: K5,,; () —
Serial: KD,;; KB }——
Symmetric: KB,,;
Reflexive and ()
Transitive: S4.,;
e Reflexive and

Euclidean: S5,,;
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e This is the logic related to transitive relations:

e Syntax is the same as before.
e Semantics is given by a Kripke Structure M for P and
A={1,...,n}is atuple

M — <W7R17'°'7Rn7ﬂ->7
where:

e VW is anon-empty set;
e Foreachae A, R, < W x W, where each R, Is transitive;
e m:WxP —{T,F}.

e The satisfiability relation is defined as before.
e The notions of satisfiability/validity of a formula are defined
exactly as before.
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Frame Characterisation and Axioms

Name | Axiom Frame Property

D “lp — @p | Serial Vodw. R ow

T “lp — Reflexive | Vw. R, ww

B p — [“]yp | Symmetric | Yow. R,ow — Rawv

4 “lp — [¢][*]o | Transitive | Yuvw.(Reouv A Ryow) — Reuw
5 @ — [[J@e | Euclidean | Yuvw.(Rouv A Rouw) — Roow
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Taut enough propositional tautologies.
K (e = o) = (Ll — [2Jo).

SUB Uniform substitution: and
MP If - pand ¢ — v, then |- 9.
Nec If — ¢, then - [¢]p

You can also add:
Dual @gp > D[P
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Taut enough propositional tautologies.

K Llle = 9) = (Lo — [2]Y).
4 [l - [y

B - [y
and

SUB Uniform substitution: and
MP If - pand ¢ — v, then |- 9.
Nec If — ¢, then - [¢]p

You can also add:
Dual @gp > D[P
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We want a proof for 5 (<&»p — [“]<>p) in the system containing the
axioms K, B, and 4. In the following,

o K:[*[(¢p =) — ([lp — [=]¥)
e B:p—o [0y
o 4:[p — [ ]ay
e chaining: ((¢ — ¥) A (¥ = x)) = (¢ = X)
1. [-p — E=]—p 4, ¢ = —p]
2. p — op ‘contrapositive,1]
3. [H(®©p— ©p) NEC, 2]
1. l@op— @p) — oo - [ep) [K p=@p, ¢ = op]
5. @@p — []op MP,3,4]
6. ©p— [ B, ¢ = ©p]
7. <p— [ 'Chaining,6,5]

Note that because we have uniform substitution, replacing p in the
conclusion gives us all instances of 5.
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Q 5] y 0
o:pAY oL lp o:
o o.1: Y o.1: Y
; for all existing 0.2 | for a fresh .1
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Q 5] y 0
o:pAY oL lp o:

' .0 0.0 :
for all existing 0.2 | for a fresh .1

T D B 4 4r
p=p | L= Qv | =0y o — e
o:l |p o:l |p 0.0 | o:l |p 0.0 |
o:Y o: o:Y 0.0 : | oL
for all existing o.1

Note: For S5 we have (T+4+4r).
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Example: ((Ip A [lg) — CI(Cp A [lg)

(1) 1:(

C. Nalon

D N

q) A Q(O—p v O—g)

[neg. assumption]
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(1) 1:(

C. Nalon

p A g) A O(O—p v $—9)

(2) 1:(

D N

Example: ((Ip A [lg) — CI(Cp A [lg)

q)

(8) 1: O(G—p v $—g)

p

q

[neg. assumption]
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Example: ((Ip A [lg) — CI(Cp A [lg)

(1) 1: (Op A Lg) A O(O—p v O—q)  [neg. assumption]
(2) 1: (LlpAldg) [, 1]

(8) 1: O(O—p v O—g)la, 1]

(4) 1:Cp @, 2

(5) 1:[g @, 2]

6) 1.1: O—p v $—q [0, 3]
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(1) 1:(

Example: ((Ip A [lg) — CI(Cp A [lg)

q) A Q(O—p v O—g)

(2) 1:(
(8) 1: G (O—pv O—q)

C. Nalon

a,1
0,1

0,2

@, 2
9, 3]
4,4
4,5

[neg. assumption]
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Example: ([_Ip A [lg)

(1) 1:(

C. Nalon

— [1(CIp A [g)

q) A Q(O—p v O—g)
(2) 1:(
(8) 1: O(C—p v C—q)l

a, 1
a, 1
0,2
(a2
), 3]
4,4
4,5

O)\‘I.‘I: $—q [, 6]

[neg. assumption]
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Example: ((Ip A [lg) — CI(Cp A [lg)

(1) 1: (Op A Lg) A O(O—p v O—q)  [neg. assumption]

2) 1: (Lp AU0g) |, 1]
(8) 1: G(O—p v O—g)le, 1]

(4) 1:[p e, 2
(5) 1: g a, 2]
1.1: <>ﬁp v &O—q [0, 3]
(7) 1 p |4 41
(8) 1 q 4,8

9) 1.1:<>ﬁp 153, 6] ( O)\1.1:<>ﬂq 153, 6]

C. Nalon
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Example: ((Ip A [lg) — CI(Cp A [lg)

(1) 1: (Op A Lg) A O(O—p v O—q)  [neg. assumption]
2) 1: (LpAldg) [a,1]
(8) 1: O(G—p v G—g)e, 1]

(4) 1:[p e, 2
(5) 1: g a, 2]
1.1: <>ﬁp v &O—q [0, 3]
(7) 1 p |4 41
(8) 1 q 4,8

9) 1.1: O—p [ ]10)\1.12<>ﬂq[5,6]
(11) 1.1.1: —p [6,9] (13) 1.1.2: —q |9, 10]

(12) 1.1.1:p |7, 7]
X
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Example: ((Ip A [lg) — CI(Cp A [lg)

(1) 1: (Op A Lg) A O(O—p v O—q)  [neg. assumption]
2) 1: (LpAldg) [a,1]
(8) 1: O(G—p v G—g)e, 1]

(4) 1:[p e, 2
(5) 1: g a, 2]
1.1: <>ﬁp v &O—q [0, 3]
(7) 1 p |4 41
(8) 1 q 4,8

9) 1.1: O—p [ ]10)\112<>ﬂq[5,6]
(11) 1.1.1: —p [6,9] (1 ) 1.1.2: —q |9, 10]

(12) 1.11:p [|v,7] (14) 1.1.2:q [v,8]
X X
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Termination in K4-Tableaux

p v Op
(1) 1: O=p A 1O —p [neg. assumption]
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Termination in K4-Tableaux

pv QCp

(1) 1: O=p A 1O —p 'neg. assumption]

C. Nalon Minchen, 31/10/2023



Termination in K4-Tableaux

(1) 1: O—p A
(2) 1: GO—p

$—p

(3) 1: IO —p

(4) 1.1: —p

C. Nalon

[, 1]

pv QCp

'neg. assumption]

[a, 1]

[9,2]
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Termination in K4-Tableaux

(1) 1: G—p A O—p

(2) 1: G—p
(8) 1:JO—p
(4) 1.1: —p
5) 1.1: O—p

C. Nalon

p v <Cp

'neg. assumption]
[, 1]
[, 1]
[9, 2]
[, 3]
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Termination in K4-Tableaux

pv <O0p

(1) 1: O=p A 1O —p 'neg. assumption]
(2) 1: O—p [, 1
3) 1:O00C—p  [a1]
(4) 1.1: —p (5, 2]
(5 11: $—p %3]
6) 1.1: [ 1C—p  [4,3
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Termination in K4-Tableaux

(1) 1: G—p A O—p

(2) 1: O—p
(3) 1: ¢~
(4) 1.1: —p
5) 1.1: O—p
6) 1.1: [ —p
(7) 1.1.1: —p
8) 1.1.1: &O—p

9) 1.1.1: 1 —p

C. Nalon

pv QCp

'neg. assumption]
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Resolution



e Because it is beautiful!
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e Because it is beautiful! It has only one rule, it is sound, it Is
complete, it is easy to implement, proofs are easily checkable, it is
meant for machines...
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e Because it is beautiful! It has only one rule, it is sound, it Is
complete, it is easy to implement, proofs are easily checkable, it is
meant for machines...

e Because it is efficient! Well, we should note that theoretical results
show that there are problems for which there are only exponential
size proofs in resolution systems (the pigeonhole formulae). In
practice, however, provers based on resolution (and its variations)
do perform well.
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C. Nalon

Because it is beautiful! It has only one rule, it is sound, it is
complete, it is easy to implement, proofs are easily checkable, it is
meant for machines...

Because it is efficient! Well, we should note that theoretical results
show that there are problems for which there are only exponential
size proofs in resolution systems (the pigeonhole formulae). In
practice, however, provers based on resolution (and its variations)
do perform well.

The calculus for classical logic can be adapted to non-classical
logics. Those calculi are also reasonably simple and they are also
efficient in practice (or, to be more precise, provers are comparable
to state-of-art provers implementing other calculi).
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Clausal Resolution for Propositional Logic

e Resolution is a refutational procedure: if we want to prove ¢, we
apply the rules to —.

e Reasoning is performed backwards: from what we want to prove to
axioms (in this case, a contradiction).

e Resolution can be clausal or non-clausal: for clausal resolution, we
transform —y into CNF before applying the inference rule.

e There is only one inference rule:

IRES|] (¢ v 1)
(v v =l
(¢ v )

e Premises are called parent clauses (or the resolvends). The
conclusion is called the resolvent. The literals [ and —/ are known as
complementary literals. The parent clauses are resolved on the
complementary literals, generating the resolvent.

e The inference rule is applied until either a contradiction is found or

no new clauses can be generated.

C. Nalon Minchen, 31/10/2023



Procedure

Let I'y be a set of clauses.
1: 1«0
2: repeat
3: Choose c; andc, € I'; suchthatl € ¢; and —1[ € ¢

4:  Calculate the resolvent r
5: if r is not redundant then
6: Let ;1 < T U {r}

7:  endif

8 1 <— 1+ 1

9: until falsee I'; or I'; ., =T
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Procedure

Let I'y be a set of clauses.
1: 1«0
2: repeat
3: Choose c; andc, € I'; suchthatl € ¢; and —1 € ¢

4:  Calculate the resolvent r
5. 1f r is not redundant then
6: Let ;1 « T U {r}

7:  endif

8 1 <— 1+ 1

9: until falsee I'; or I'; ., =T
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CNF

C. Nalon

A literal is a propositional symbol or its negation.
A clause is a disjunction of literals.
A formula of the form

n m

AN

i=1 j=1

IS in conjunctive normal form (CNF).

-

Let ¢ € WFF.
There is ¢ € WFF, ¢ == ¢ and ¢’ is in CNF.

.

Muinchen, 31/10/2023



The usual rewritring rules

e Combinatorial explosion:

(LA oA ly) v (kL Ao AKky) = O(m xn)

e In general:

0 w(t) w()
S RAREENANZY 2?21 w(%) H?:1 w(%)
©1V ...V Py [ w(e:) i W(ps)
L1 — P2 w(p1)w(p2) w(p1) + w(p2)
p1 < 2 | wlp)w(wz) + w(p1)w(ps) | wle)w(ez) + w(p1)w(es)
—( w(¢p) w(p)
atomic 1 1
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e We introduce new literals which replace subformulae;
e We also need to introduce the definition clauses for those literals.
Let © be the formula to be replaced:

Pol(¢) >0 = new, — ¢
Pol(p) <0 = ¢ — new,
Pol(p) =0 = new, < ¢
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e We introduce new literals which replace subformulae;
e We also need to introduce the definition clauses for those literals.
Let © be the formula to be replaced:

Pol(¢) >0 = new, — ¢
Pol(p) <0 = ¢ — new,
Pol(p) =0 = new, < ¢

Let o € WFF. Thereis ¢ € WFF, ¢’ is in CNF,
and ¢’ is satisfiable if, and only if, ¢ is satisfiable.
Moreover, size(¢’) = O(size(yp)).
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(anbA f)yviieandne)
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(anbA f)viieandAne)

NEWgnaba f) V NEW(cadne)

neWgabaf) — (A ADA f) neweadrey = (¢ A d Ae)
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(anbA f)viieandAne)

NEWgnaba f) V NEW(cadne)

NeWgabaf) — (A A DA f) neWendne) = (¢ A d A e)

ﬁnew(a/\b/\f) VvV a ﬁnew(c/\dw) VvV C
—NEW(gabnf) V b —NEW(cadne) V d
—NEW(gnbnf) V | —NEW(cadne) V €

C. Nalon Minchen, 31/10/2023



C. Nalon Minchen, 31/10/2023



C. Nalon Minchen, 31/10/2023



C. Nalon Minchen, 31/10/2023



(tirvis) Attt > DpAgGAT)A(ts > SAT AU

(trvie) A(trvp)A(tiv g A(ttvr)A(tavs) Altavit) A (te v u)

C. Nalon Minchen, 31/10/2023



More on Renaming

e Renaming ensures that the CNF of a formula has size linear on the
size of that formula.
e Renaming helps separating different contexts for reasoning:

t— OOp
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e Renaming ensures that the CNF of a formula has size linear on the
size of that formula.
e Renaming helps separating different contexts for reasoning:

L — &Op
L — Sty At — &p

e The above does not preserve the meaning in the modal settings: we
need to say where the renaming is being applied:

t— OOp

C. Nalon Minchen, 31/10/2023



More on Renaming

e Renaming ensures that the CNF of a formula has size linear on the
size of that formula.
e Renaming helps separating different contexts for reasoning:

L — &Op
L — Sty At — &p

e The above does not preserve the meaning in the modal settings: we
need to say where the renaming is being applied:

t— &&p
t — &ty A Fl(t1 — &p)
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Resolution-based Calculi for Modal Logics

There are some few:

Fitting’s destructive resolution for modal logics [Fit90]

Mint’s resolution for modal logics [Mints, 1990]

Farinas de Cerro and colleagues [Far82, dCH88, EdC89, dCH90]
Non-clausal resolution by Abadi & Manna [AM86]

C. Nalon Minchen, 31/10/2023



This was introduced in [ND, 2007].

e We came up with the normal form while investigating techniques for
preprocessing of formulae (prenex and antiprenexing) [ND, 2006]

e The calculus is now referred to as GMR for Global Modal
Resolution, as it uses global renaming.

e Itis quite simple, the propositional and the modal part are
completely separated.

e The (truly) modal rules are hyper-rules.
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The Normal Form

In [ND, 2006, ND, 2007]:

e |nitial clause *

e |iteral clause *

e Positive a-clause *

e Negative a-clause [*

where [, I, [, € L. Positive and negative a-clauses are together known
as modal a-clauses; the index a may be omitted if it is clear from the
context.
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Classical Resolution

[IRES1] [*](true D v )
D’ v —=l)
Dv D"

l

2
2
!

2
2
!

[IRES2] [#

[LRES] [®

IMRES] [F( — [E)
(l;, — @)

* (tI'll€ —> _'ll Vv _'12)
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Modal Resolution |

[GEN1] [y — [2=h)
*ly, — =)
N~ 6-)
*l(true — L1 v...vi, Vv
*(true — —ljv...v =l v =l)
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Modal Resolution |

[GEN1] [y — [2=h)
*ly, — =)
N 6-)
*l(true — 1 v...vi,VvI)
*(true — —ljv...v =l v =l)
a —l
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Modal Resolution |

[GEN1] [y — [2=h)
*ly, — =)
N 6-)
*l(true — 1 v...vi,VvI)
*(true — —ljv...v =l v =l)
a
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Modal Resolution |

[GEN1] [y — [2=h)
*ly, — =)
N 6-)
*l(true — 1 v...vi,VvI)
*|(true — —ljv...v =l v =l)
a . _'l,_'ll,...,_'lm

liv...vi, Vv

C. Nalon Minchen, 31/10/2023



Modal Resolution Il

all)

[GEN2]  [F(l

(il — [el=h)
Iy — @)
*(true — =l v =l v =)
|, — [e=ln)
1 - @)
*(true — 1 v ...V i)
*|(true — =l v...v =l v =l)
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Example - NNF - |

(p —q) — (Lp — Llg)
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Example - NNF - |

(p —q) — (Lp — Llg)

We negate the formula:

—(L(p — q) — (Lp — Lg))
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Example - NNF - |

(p —q) — (Lp — Llg)

We negate the formula:

~([p — q) — (Up — Llg))
and rewrite into NNF:

(p — q) A =(Lp — Lq)
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Example - NNF - |

(p —q) — (Lp — Llg)

We negate the formula:

~([p — q) — (Up — Llg))
and rewrite into NNF:

(p — q) A =(Lp — Lq)

(p—q) ~[Ldp A —[ g

(p—q) A0pA g
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Example - NNF - |

(p —q) — (Lp — Llg)

We negate the formula:

—(L(p — q) — (Lp — Lg))

and rewrite into NNF:

(p — q) A =(Lp — Lq)

(p—q) ~[Ldp A —[ g

(0= q) Ap A g
then we apply renaming to start the transformation:

F(start — to) A Fl(to — O(p — q) A Op A O—0)
C. Nalon MUnchen, 31/10/2023




Example - NNF - I

*(start—>t0)/\*(to—> (p—>61)/\ 79/\<>ﬁ61)

we apply rewriting and get:

F(start — to), Fl(to — (0 — ), FEl(to — [lp), El(to — $—a)
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Example - NNF - I

*(start—>t0)/\*(to—> (p—>61)/\ 79/\<>ﬁ61)

we apply rewriting and get:

F(start — to), Fl(to — (0 — ), FEl(to — [lp), El(to — $—a)

and we are almost there. We just need to apply renaming to the second
formula above:

*|(to — LIt1), *(t1 — (p — q))
and rewrite it in the normal form. We obtain the following set of clauses:

*|(start — tg)

*|(to — LIt1)

*|(true —» —t1 v —p v q)

*|(to — LIp)

C. Nalon *1(tg — <>—'q) Miinchen, 31/10/2023




A Refutation

t() —> tl)
true — —t; v —p Vv q)
to — [Ip)

T 9 =
*
AN TN TN TN N
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A Refutation

(start — %)

(to = LIt1)

*](true — —t; v —p Vv q)
(
(
(

to — [Ip)
to — O —q)
true — —tg) [GEN1,2,4,5, 3]

o B s BY e I
*
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A Refutation

start — %)
t() —> tl)
true — —t; v —p Vv q)

(
(
(
(to — Llp)
(
(
(

to — —q)
true — —tg) [GEN1,2,4,5, 3]
start — false) [IRES1,7,1]

U8y O s Y
*
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Causes of Inefficiency

OO A -p
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Causes of Inefficiency

OO A -p

start — 1
#(ty — Ot1)
(ty — $p)

*|(to — [L1—=p)

= 09I =
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Causes of Inefficiency

OO A -p

start — 1

#(tg — Oty)

“(t; — $p) —LI=p
*|(to — L1—p)

= 09I =
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Causes of Inefficiency

OO A -p

start — 1

#(tg — Oty)

“(t; — $p) —LI=p
*|(to — L1—p)

= 09I =

1 {<><>p A DﬁpJ 0

1.1 $0p |0 1.2|[]-pl0

A

111 Op [ 121 P |1

1111 P |2
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Causes of Inefficiency

OOp A

—p

1 {<><>p A DﬁpJ 0

11 [O0p 10

111 Op [

1111 P |2

C. Nalon

1.2([]-pl0

A

1.21| 7P |1

= 09I =

start — 1

#(tg — Oty)
“(t; — $p) —LI=p
*|(to — L1—p)

wo| &Gp A O, <><>p,mﬁp}

afor
B

Muinchen, 31/10/2023
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