Efficient Theorem-Proving for
Modal Logics

Claudia Nalon

Department of Computer Science, University of Brasilia

Joint work with Clare Dixon (Manchester), Ullrich Hustadt (Liverpool),
and Fabio Papacchini (Lancaster at Leipzig)

Introduction

e Modal logics have been used in Computer Science to represent
properties of complex systems: temporal, epistemic, obligations,
choice, actions, and so on.

e Given a representation of a computational system in a logical
language, we also want to reason about the system and their
properties.

e There are different proof methods we could use:

e Some modal languages can be translated into first-order and we
could then use readily available automated reasoners.

e Provide a proof method within the language of a particular modal
logic.

C. Nalon LMU, 12/10/2023

Syntax and Semantics

e Modal logics are extensions of propositional logic with operators °
and >

e Evaluation of a formula depends on a set of worlds and on the
accessibility relations on this set.

e Different restrictions on the accessibility relations give rise to
different modal logics.

C. Nalon LMU, 12/10/2023

Syntax and Semantics

e Modal logics are extensions of propositional logic with operators °
and >

e Evaluation of a formula depends on a set of worlds and on the
accessibility relations on this set.

e Different restrictions on the accessibility relations give rise to
different modal logics.

C. Nalon LMU, 12/10/2023

Syntax and Semantics

e Modal logics are extensions of propositional logic with operators °
and >

e Evaluation of a formula depends on a set of worlds and on the
accessibility relations on this set.

e Different restrictions on the accessibility relations give rise to
different modal logics.

0 (M, wo) = Op A $—p

C. Nalon LMU, 12/10/2023

Syntax and Semantics

e Modal logics are extensions of propositional logic with operators °
and >

e Evaluation of a formula depends on a set of worlds and on the
accessibility relations on this set.

e Different restrictions on the accessibility relations give rise to
different modal logics.

C. Nalon LMU, 12/10/2023

Syntax and Semantics

e Modal logics are extensions of propositional logic with operators *
and ‘@', whereae A= {1,...,n},neN.

e Evaluation of a formula depends on a set of worlds and on the
accessibility relations on this set.

e Different restrictions on the accessibility relations give rise to
different modal logics.

C. Nalon LMU, 12/10/2023

e The set of well-formed formulae, WFF:

° pEP;
e if e WFF,thensoare —pand[*]p,ae A={1,...,n};
e if pandy e WFF, then (¢ A ¢) € WFF.

e Abbreviations:

false = p A —p (for p € P)
true = —false

oV P =—(—p A)
p—oP=—-pvy
poP=(p—>P)A [—p)
@y = —[I—e.

C. Nalon LMU, 12/10/2023

e A Kripke Structure M for P and A = {1,...,n} is atuple

— <W,R1, ... ,Rn,ﬂ>,
where:

e VW is anon-empty set;
e Foreachae A, R, W x W,
e m:WxP—|{T,F}.

e The satisfiability relation = between a world w € W in a Kripke
structure M and a formula is inductively defined by:

(M,w) Ep,peP,iff r(w,p) = T;

e (M,w)E —piff (M,w) E ¢;
o (/\/l,w)zgp/\wlff(/\/lw)\—gpand(/\/lw)}:w
o (M,w) [y iff for all w', wR,w' implies (M, w') = .

C. Nalon LMU, 12/10/2023

Reasoning Tasks

M :<W,R1,...,Rn,ﬂ'>

e A formula ¢ Is locally satisfiable iff there is a model M and w € W
such that (M, w) = ¢. In this case, we say that M satisfies ¢,
denoted by M =, .

e A formula ¢ Is globally satisfiable iff there is a model M and for all
w € W we have that (M, w) = ¢. In this case, we say that M
globally satisfies ¢, denoted by M = .

e A formula ¢ is satisfiable under the global constraints
[' = {v1,...,7m} iff there is a model M such that M =4 I" and there
IS w € W such that (M, w) =1, ¢.

C. Nalon LMU, 12/10/2023

Reasoning Tasks

M :<W,R1,...,Rn,ﬂ'>

e A formula ¢ Is locally satisfiable iff there is a model M and w € W
such that (M, w) = ¢. In this case, we say that M satisfies ¢,
denoted by M = .

PSPACE-complete [Ladner, 1977, Halpern and Moses, 1992]

e A formula ¢ Is globally satisfiable iff there is a model M and for all
w € W we have that (M, w) = ¢. In this case, we say that M
globally satisfies ¢, denoted by M = .

EXPTIME-complete [Spaan, 1993]

e A formula ¢ is satisfiable under the global constraints
T' = {v,...,7m} iff there is a model M such that M = I" and there
IS w € W such that (M, w) =1, ¢.
EXPTIME-complete [Spaan, 1993]

C. Nalon LMU, 12/10/2023

Local Reasoning

e Nice properties: finite, tree-like models with height bounded by the
modal depth/modal level of the formula.

OOp A O-p
wo 1 [<><>p A Dﬂp} 0

/
11| O0p 10 1.2|[]—-p|0
)

111 $Op [121 P |1
1111 » |2

N~——

C. Nalon LMU, 12/10/2023

Clausal Resolution for Propositional Logic

e There is only one inference rule:

IRES|] ¢ v 1
v v —l
o v oY

C. Nalon LMU, 12/10/2023

Procedure

Let I'y be a set of clauses.
1: 1< 0
2: repeat
3: Choose c; andc, e I'; suchthatl e ¢; and —1[€ ¢
4: Calculate the resolvent r
5 If » IS not redundant then
6: LetT'yy1 < I U {r}
7: endif
8 1<— 1+ 1
9: until falsee I'; or I, = I

C. Nalon LMU, 12/10/2023

Procedure

Let I'y be a set of clauses.
1: 1«0
2: repeat
3: Choose c; andc, e I'; suchthatl e ¢y and —1[€ ¢
4: Calculate the resolvent r
5 If » IS not redundant then
6: LetT'yy1 < I U {r}
7: endif
8 1<— 1+ 1
9: until falsee I'; or I, = I

C. Nalon LMU, 12/10/2023

Procedure

Let I'y be a set of clauses.

1: 1«0

2: repeat

3: Choose c; andc, e I'; suchthatl € ¢; and —1 € ¢
4: Calculate the resolvent r
5 If » IS not redundant then
6: Let ;1 < I'; U {r}
7: endif
8 1<— 1+ 1
9: until falsee I'; or I, = T

C. Nalon LMU, 12/10/2023

Procedure

Let I'y be a set of clauses.

1: 1«0

2: repeat

3: Choose c; andc, e I'; suchthatl € ¢; and —1 € ¢
4: Calculate the resolvent r
5 If » Is not redundant then
6: LetT'yy < I U {r}
7: endif
8 1— 1+ 1
9: until falsee I'; or I, = I

C. Nalon LMU, 12/10/2023

CNF

e conjunctive normal form

S

Vi

i=1 j=1

Let o € WFF. There is ¢’ € WFF, ¢ == ¢ and ¢
is in CNF.

C. Nalon LMU, 12/10/2023

CNF

e conjunctive normal form

S

Vi

i=1 j=1

Let o € WFF. There is ¢' € WFF, ¢ == ¢ and ¢’

is in CNF.
e w— Y — —pv (def. implication);
o —(pry)— —pv ¢ (De Morgan);
o —(pvy)— —p Ay (De Morgan);
o ——pr— (double negation elimination);
e Vv (W AY)Y— (Vv) A (pv) (distribution).

C. Nalon LMU, 12/10/2023

CNF

e conjunctive normal form

S

Vb

i=1 j=1

Let o € WFF. There is ¢' € WFF, ¢ == ¢ and ¢’

is in CNF.
e w— Y — —pv (def. implication);
o —(pry)— —pv ¢ (De Morgan);
o —(pvy)— —p Ay (De Morgan);
o ——pr— (double negation elimination);
e Vv (W AY)Y— (Vv) A (pv) (distribution).

size((p v ') A (o v ") =2 x size(p) + size(p’ A ") + 2
C. Nalon LMU, 12/10/2023

e Introduce new literals which replace complex subformulae;
e Introduce the definition clauses for those literals.
Let ¢ be the formula to be replaced and new,, a fresh propositional

symbol:
Pol(p) >0 = new, — ¢
Pol(p) <0 = ¢ — new,
Pol(p) =0 = new, < ¢
" [Tseitin,1968],[PG, 1986] b

Let o € WFF. Thereis ¢/ € WFF, ¢’ is in CNF,
and ' is satisfiable if, and only if, ¢ is satisfiable.
Moreover, size(¢’) = O(size(y)).

C. Nalon LMU, 12/10/2023

C. Nalon LMU, 12/10/2023

C. Nalon LMU, 12/10/2023

C. Nalon LMU, 12/10/2023

(t1 via) A(t1 > D1 Apa ADP3 AP A(ta— g1 AGa Ags A Qy)

C. Nalon LMU, 12/10/2023

(t1 via) A(t1 > D1 Apa ADP3 AP A(ta— g1 AGa Ags A Qy)

(tl V tQ)
(—t1 v p1) A (—t1 v pa) A (—t v ps) A (—t1 Vv py)
(—ta v aq1) A (—ta v q) A (—ta v g3) A (—ta v qa)

C. Nalon LMU, 12/10/2023

More on Renaming

e Renaming ensures that the CNF of a formula has size linear on the
size of that formula.
e Renaming helps separating different contexts for reasoning:

t — &Op

C. Nalon LMU, 12/10/2023

More on Renaming

e Renaming ensures that the CNF of a formula has size linear on the
size of that formula.
e Renaming helps separating different contexts for reasoning:

L — &G
L — &t AT — &p

C. Nalon LMU, 12/10/2023

More on Renaming

e Renaming ensures that the CNF of a formula has size linear on the

size of that formula.

e Renaming helps separating different contexts for reasoning:

L — &G
L — &t AT — &p

e Inthe case of a modal language, we need to make sure that the
definition of the new literal is available wherever it is needed:

(t — Ot1) A

*

(t, — @p)

e The use of the universal operator “mimics” the renaming procedure
for First-Order Logic, where definitions are universally quantified.

C. Nalon

LMU, 12/10/2023

Clauses - Previous Calculus

In [ND, 2006] and [ND, 2007] (inspired by [Mints, 1990])

e |nitial clause *|(start — \/,_; lp)

(true — \/,_, lp)
e Positive a-clause ("' — [l
(

I — @)

e |iteral clause *

e Negative a-clause [*

where [, I', [, € L. Positive and negative a-clauses are together known
as modal a-clauses; the index a may be omitted if it is clear from the
context.

C. Nalon LMU, 12/10/2023

Modal Layered Clauses

In [NHD, 2015, NDH, 2019] (inspired by [AdNdR, 2000],
[AGHdR, 2000]):

e Literal clause ml:\/,_ lp

e Positive a-clause ml:l' — [*]]

e Negative a-clause mil : ' — <l

where mle Nu {«}and [, I, [, € L.

C. Nalon LMU, 12/10/2023

Inference Rules

[LRES]
ml: D v |
ml': D' v =l
o{ml,ml'}): D v D

[IMRES]
ml: 1, — [l
ml . 1y, — <l

—1

o({ml,ml'}) . =l v 5

where o({i}) = i, o ({3, #}) = 1, 0

:pvVvqg,0:—pv
i€ {+} UN b b

* 1PV g, *x TPV (
«:pvgl:—pvyg

O:pvagl:—pvyg
C. Nalon LMU, 12/10/2023

Inference Rules

[LRES]
ml: D v |
ml': D' v =l
o{ml,ml'}): D v D

[IMRES]
ml: 1, — [l
ml . 1y, — <l

—1

o({ml,ml'}) . =l v 5

where o({i}) = i, o ({3, #}) = 1, 0

:pvVvqg,0:—pvVv
i€ {+} UN: Py s

* 1PV g, TPV (
«:pvgl:—pvyg

O:pvagl:—pvyg
C. Nalon LMU, 12/10/2023

Inference Rules

[GEN1] ml1 : le — | ¢ _'ll
Mly, : I —[*]=l,
M1 Z;n+1 — <C>ﬁl
Mlpao: L1V ..oV v g1
o ({mlms — 3o mlY) 2 =lv o ov =l v =l

C. Nalon

LMU, 12/10/2023

Inference Rules

[GEN1] ml1 : le — | ¢ _'ll
mly = 1 — [l
mlm—l—l : Z;n_|-1 — <(>_'lm—|—1
Mlpao: L1V ...V vV g

o ({mlms — 3o mlY) 2 =lv o ov =l v =l

N A

) 'm?

C. Nalon LMU, 12/10/2023

Inference Rules

[GEN1] ml1 : le — | ¢ _'ll
mly = 1 — [l
mlm—l—l : Z;n_|-1 — <(>_'lm—|—1
Mlpao: L1V ...V vV g

o ({mlms — 3o mlY) 2 =lv o ov =l v =l

N A

) 'm?

C. Nalon LMU, 12/10/2023

Inference Rules

[GEN1] ml1 : le — | ¢ _'ll
mly = 1 — [l
mlm—l—l : Z;n_|-1 — <(>_'lm—|—1
Mlpao: 1V ...V vV g

o ({mlms — 3o mlY) 2 =lv o ov =l v =l

/! I . _'lm+17 _'lla Ty _'l’m
1> m+1 i’

S ARV RV S

C. Nalon LMU, 12/10/2023

Inference Rules

[GEN2]

mll: le — all

ml2) Z/2 — | _'ll
mZ3 . Zé — l2
ml : =l v =l v =l

where ml = o({mly, mly, mls})

[GENG3]

ml1) lll — | _'ll

mly,: I — [,

mlm+1 U - @
Mlpyo i L1 Vv ...V,

ml: =lv...v=l v =l

where ml = o({mly,...,ml,i1, Mo — 1})
C. Nalon LMU, 12/10/2023

C. Nalon

OOp A -p

0: to

0 : t0—><>t1
1: 41— Op
0: to—L]—p

LMU, 12/10/2023

C. Nalon

OOp A -p p A<D

S = O O

to 0 : t()

to — Oty 0: —tgvp
t; — Op 0: tg— O—p
to — LI1—p

LMU, 12/10/2023

OOp A -p p A<D

0: to 0: t()
0: t0—><>t1 0: _'t()\/p
1: t; — Op 0: to— P—p
0 : tg — —P
p A Q—p

% to

* _'t()\/p

w1ty — Qp

C. Nalon LMU, 12/10/2023

Implementation

Overview

KgP [NHD, 2016, NHD, 2020]:

e Set-of-support (given-clause, as in Otter), but there is one set of
support for each modal level,

C. Nalon LMU, 12/10/2023

Overview

KgP [NHD, 2016, NHD, 2020]:

e Set-of-support (given-clause, as in Otter), but there is one set of
support for each modal level,

e Refinements: negative, ordered, negative+ordered, ordered with
selection, positive resolution;

C. Nalon LMU, 12/10/2023

Overview

KgP [NHD, 2016, NHD, 2020]:

C. Nalon

Set-of-support (given-clause, as in Otter), but there is one set of
support for each modal level,

Refinements: negative, ordered, negative+ordered, ordered with
selection, positive resolution;

Pre-processing: simplification, pure literal elimination, modal level
pure literal elimination, unit propagation, populating automatically
the usable, different techniques for renaming, prenex/antiprenex,
cnf:

LMU, 12/10/2023

Overview

KsP [NHD, 2016, NHD, 2020]:

e Set-of-support (given-clause, as in Otter), but there is one set of
support for each modal level,

e Refinements: negative, ordered, negative+ordered, ordered with
selection, positive resolution;

e Pre-processing: simplification, pure literal elimination, modal level
pure literal elimination, unit propagation, populating automatically
the usable, different techniques for renaming, prenex/antiprenex,
cnf:

e Redundancy elimination: (lazy) forward/backward subsumption,
pure literal elimination, modal level pure literal elimination . . .

C. Nalon LMU, 12/10/2023

Overview

KsP [NHD, 2016, NHD, 2020]:

e Set-of-support (given-clause, as in Otter), but there is one set of
support for each modal level,

e Refinements: negative, ordered, negative+ordered, ordered with
selection, positive resolution;

e Pre-processing: simplification, pure literal elimination, modal level
pure literal elimination, unit propagation, populating automatically
the usable, different techniques for renaming, prenex/antiprenex,
cnf:

e Redundancy elimination: (lazy) forward/backward subsumption,
pure literal elimination, modal level pure literal elimination . . .

e Clause selection: shortest, newest, oldest, greatest literal, smallest
literal.

C. Nalon LMU, 12/10/2023

Overview

KsP [NHD, 2016, NHD, 2020]:

e Set-of-support (given-clause, as in Otter), but there is one set of
support for each modal level,

e Refinements: negative, ordered, negative+ordered, ordered with
selection, positive resolution;

e Pre-processing: simplification, pure literal elimination, modal level
pure literal elimination, unit propagation, populating automatically
the usable, different techniques for renaming, prenex/antiprenex,
cnf:

e Redundancy elimination: (lazy) forward/backward subsumption,
pure literal elimination, modal level pure literal elimination . . .

e Clause selection: shortest, newest, oldest, greatest literal, smallest
literal.

The full pack is in my webpage: nalon.org.

C. Nalon LMU, 12/10/2023

KgP- LWB - k_t4p - Modal Layering

2.00 20.00
1.80 == cord,no_milewelires 18.00 == cord,no_mlewel,ires
1.60 == cord, mlewel 16.00 == cord, mlewel
1.40 14.00
1.20 12.00
1.00 10.00
0.80 B.00
0.60 6.00
0.40 4.00
0.20 2.00
0.00 0.00
1 23 4567 8 9101112131415161718192021 1234567 88101112131415161718192021
Figura 1: Unsatisfiable Formulae Figura 2: Satistfiable Formulae

C. Nalon LMU, 12/10/2023

KsP- MQBF - Different Refinements

MQBF

1,000
900}
800}
700¢F
600
500
400}
S00¢
200
100}

[nstances Solved

[

4 8 15 30 60 120 250 500 1000
CPU time in seconds

& KSP (cord) - KSP (negative) -#KSP (negative ordered)
-%- KSP (positive) - KSP (plain)

1/4 1/2 1

C. Nalon LMU, 12/10/2023

All Provers - MQBF

MQBF
1,000

900|
300}
700}
600}
500|
400L

300
200
100}

[nstances Solved

1/4 12 1 2 4 8 15 30 60 120 250 500 1000
CPU time in seconds
= BDDTab -4 InKreSAT & KSP (cord)
-4~ FaCT++ @ Spartacus --OFT + Vampire

C. Nalon LMU, 12/10/2023

All Provers - LWB

| LWB
1,000

900 |
800 |
700 ¢
GO0 |
500 r
400
300 r
200 ¢
100

Instances Solved

1/41/2 1 2 4 8 15 30 60 120 250 500 1000
CPU time in seconds
= BDDTab -4 InKreSAT & KSP (cord)
- FaCT++ -eSpartacus --OFT + Vampire

C. Nalon LMU, 12/10/2023

All Provers - 3CNF

3CNF g
1,000

000
800 |
700 |
600 .
500 "

a00 F
300 !
200 |
100 |

Instances Solved

1/_1 le}] 1 2 4 8 15 30 60 120 250 500 1000
CPU time in seconds
- BDDTab -# InKreSAT - KSP (cord)
e FaCT++ -e=Spartacus - OFT 4 Vampire

C. Nalon LMU, 12/10/2023

Oracle/Portfolio

BDDTab | FaCT++ |InKreSAT KgP BSpartacus | OFT + Vampire | Unsolved
674 111 | 912 849 748 57 227

2,800f =5
2.600| e
2.400+ P e
2,200t _
< 2.000} g
21,8001 g
£ 1,600~
= 1,400}
% 1.200] -&- Oracle Procedure |
— 1.000 -¢- Oracle InKreSAT + Spartacus
800} # KgP (ordered) + BDDTab
+
-

GO0} KsP (ordered) + InKreSAT
400 F KgP (ordered) + Spartacus
1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

CPU time in seconds
C. Nalon LMU, 12/10/2023

e The calculus is sound, complete, and terminating (TABLEAUX 2015,
ToCL 2020).

e The calculus for K,, was implemented and tested (IJCAR 2016, JAR
2020).

e Negative and ordered resolution, together with layering, are also
complete (ToCL 2020).

e Ongoing and future work:

o KgP is not any clever (yet).

e Renaming can be improved????

e Saturation takes a lot of time: combined proof methods might
help here.

C. Nalon LMU, 12/10/2023

References

[Halpern and Moses, 1992] Halpern, J. Y. and Moses, Y. (1992). A guide to
completeness and complexity for modal logics of knowledge and belief.
Artificial Intelligence, 54(3):319-379.

[Ladner, 1977] Ladner, R. E. (1977). The computational complexity of
provability in systems of modal propositional logic. SIAM J. Comput.,
6(3):467—480.

[Mints, 1990] Mints, G. (1990). Gentzen-type systems and resolution rules,
part |: Propositional logic. Lecture Notes in Computer Science,
417:198-231.

[Spaan, 1993] Spaan, E. (1993). Complexity of Modal Logics. PhD thesis,
University of Amsterdam.

C. Nalon LMU, 12/10/2023

References

INHD, 2015] Nalon, C., Hustadt, U., and Dixon, C. (2015a). A modal-layered
resolution calculus for K. In [Nivelle, 2015], pages 185-200.

[Nivelle, 2015] Nivelle, H. D., editor (2015). Automated Reasoning with
Analytic Tableaux and Related Methods - 24th International Conference,
TABLEAUX 2015, Wroctaw, Poland, September 21-24, 2015. Proceedings,
volume 9323 of Lecture Notes in Computer Science. Springer.

[NHD, 2016] Nalon, C., Hustadt, U., and Dixon, C. (2016). KgP: A
resolution-based prover for multimodal K. In Olivetti, N. and Tiwari, A.,
editors, Automated Reasoning: 8th International Joint Conference, IJCAR
2016, Coimbra, Portugal, June 27 — July 2, 2016, Proceedings, pages
406—415, Cham. Springer International Publishing.

[INDH, 2019] Nalon, C., Dixon, C., Hustadt, U.: Modal resolution: Proofs,
layers, and refinements. ACM Trans. Comput. Log. 20(4), 23:1-23:38 (2019)

[NHD, 2020] Nalon, C., Hustadt, U., Dixon, C.: KgP: Architecture, refinements,

strategies and experiments. J. Autom. Reason. 64(3), 461—-484 (2020)
C. Nalon LMU, 12/10/2023

References

[IND, 2006] Nalon, C. and Dixon, C. (2006). Anti-prenexing and prenexing for
modal logics. In Proceedings of the 10th ECAI, Liverpool, UK.

IND, 2007] Nalon, C. and Dixon, C. (2007). Clausal resolution for normal
modal logics. J. Algorithms, 62:117-134.

INMD, 2014] C. Nalon, J. Marcos, and C. Dixon. Clausal resolution for modal
logics of confluence. In S. Demri, D. Kapur, and C. Weidenbach, editors,
Automated Reasoning. Proceedings of the 7th International Joint
Conference on Automated Reasoning (IJCAR), volume 8562 of Lecture
Notes in Computer Science, pages 322—336. Springer, 2014,

C. Nalon LMU, 12/10/2023

References

[Tseitin,1968] G. Tseitin. On the complexity of derivations in the propositional
logics. In A. O. Slisenko, editor, Studies in Constructive Mathematics and
Mathematical Logic, Part I, pages 115—125. 1968.

[PG, 1986] D. A. Plaisted and S. A. Greenbaum. A Structure-Preserving
Clause Form Translation. Journal of Logic and Computation, 2:293—-304,
1986.

[Haken, 1985] A. Haken. The Intractability of Resolution. Theoretical
Computer Science, 39:297-308, 1985.

C. Nalon LMU, 12/10/2023

References

[AANdR, 2000] C. Areces, H. de Nivelle, and M. de Rijke. Prefixed Resolution:
A Resolution Method for Modal and Description Logics. In H. Ganzinger,
editor, Proc. CADE-16, volume 1632 of LNAI, pages 187-201, Berlin,

July 7-10 1999. Springer.

[AGHdR, 2000] C. Areces, R. Gennari, J. Heguiabehere, and M. D. Rijke.
Tree-based heuristics in modal theorem proving. In Proc. of ECAI 2000,
pages 199-203. IOS Press, 2000.

[AH, 2002] C. Areces and J. Heguiabehere. HyLoRes: A hybrid logic prover,
Sept. 18 2002.

[AG, 2011] C. Areces and D. Gorin. Resolution with order and selection for
hybrid logics. Journal of Automated Reasoning, 46(1):1—42, 2011.

C. Nalon LMU, 12/10/2023

BDD Tab FaCl++ InKreSAT KgP (cord) Spartacus OFT +
Vampire
branch_n 22 22 12 12 15 15 18 18 12 12 50 70
branch_p 22 22 12 12 22 22 23 24 14 14 50 70
d4_n 20 440 6 40 34 48 1560 28 760 14 200
d4_p 26 640 24 600 18 360 54 1800 32 920 21 960
dum_n 39 2400 42 2640 23 1120 49 3200 44 2800 17 640
dum_p 42 2640 38 2320 28 1520 50 3280 46 2960 18 720
grz_n 35 2600 27 1800 50 4500 5 50 52 5500 24 1500
grz_p 35 2600 27 1800 51 5000 29 2000 52 5500 27 1800
lin_n 46 4000 43 3400 33 2500 1 10 50 4800 40 3100
lin_p 14 500 28 10000 56 500000 23 5000 55 400000 28 10000
path_n 37 290 48 400 7 14 54 1000 47 400 41 330
path_p 35 270 48 400 5 12 54 1000 47 400 41 330
ph_n 10 10 8 16 24 90 3 6 21 75 15 45
ph_p 11 11 9 8 10 10 5 5 9 9 10 10
poly_n 39 600 34 500 30 36 540 44 720 20 220
poly_p 38 580 34 500 28 400 36 540 44 700 20 220
tdp_n 40 3500 24 1500 17 800 39 3000 45 6000 11 200
tdp_p 48 7500 49 8000 28 49 8000 53 12000 14 500

	Introduction
	Motivation
	Syntax and Semantics
	Syntax
	Semantics
	Reasoning Tasks
	Local Reasoning
	Clausal Resolution for Propositional Logic
	Procedure
	CNF
	Renaming
	Example
	More on Renaming
	Clauses - Previous Calculus
	Modal Layered Clauses
	Inference Rules
	Inference Rules
	Inference Rules
	Examples

	Implementation
	Overview
	KSP- LWB - k_t4p - Modal Layering
	KSP- MQBF - Different Refinements
	All Provers - MQBF
	All Provers - LWB
	All Provers - 3CNF
	Oracle/Portfolio
	Some Notes
	References

