Efficient Theorem-Proving for Modal Logics

Cláudia Nalon

Department of Computer Science, University of Brasília

Joint work with Clare Dixon (Manchester), Ullrich Hustadt (Liverpool), and Fabio Papacchini (Lancaster at Leipzig)

Introduction

Motivation

- Modal logics have been used in Computer Science to represent properties of complex systems: temporal, epistemic, obligations, choice, actions, and so on.
- Given a representation of a computational system in a logical language, we also want to reason about the system and their properties.
- There are different proof methods we could use:
 - Some modal languages can be translated into first-order and we could then use readily available automated reasoners.
 - Provide a proof method within the language of a particular modal logic.

- Modal logics are extensions of propositional logic with operators '□' and '◊'.
- Evaluation of a formula depends on a set of worlds and on the accessibility relations on this set.
- Different restrictions on the accessibility relations give rise to different modal logics.

- Modal logics are extensions of propositional logic with operators '□' and '◊'.
- Evaluation of a formula depends on a set of worlds and on the accessibility relations on this set.
- Different restrictions on the accessibility relations give rise to different modal logics.

- Modal logics are extensions of propositional logic with operators '□' and '◊'.
- Evaluation of a formula depends on a set of worlds and on the accessibility relations on this set.
- Different restrictions on the accessibility relations give rise to different modal logics.

- Modal logics are extensions of propositional logic with operators '□' and '◊'.
- Evaluation of a formula depends on a set of worlds and on the accessibility relations on this set.
- Different restrictions on the accessibility relations give rise to different modal logics.

- Modal logics are extensions of propositional logic with operators 'a' and ' \diamondsuit ', where $a \in \mathcal{A} = \{1, \dots, n\}, n \in \mathbb{N}$.
- Evaluation of a formula depends on a set of worlds and on the accessibility relations on this set.
- Different restrictions on the accessibility relations give rise to different modal logics.

Syntax

- The set of well-formed formulae, WFF:
 - $p \in \mathcal{P}$;
 - if $\varphi \in \mathsf{WFF}$, then so are $\neg \varphi$ and $\square \varphi$, $a \in \mathcal{A} = \{1, \ldots, n\}$;
 - if φ and $\psi \in WFF$, then $(\varphi \land \psi) \in WFF$.
- Abbreviations:
 - false $\equiv p \land \neg p \text{ (for } p \in \mathcal{P})$
 - true $\equiv \neg$ false
 - $\varphi \lor \psi \equiv \neg(\neg \varphi \land \neg \psi)$
 - $\bullet \quad \varphi \to \psi \equiv \neg \varphi \lor \psi$
 - $\varphi \leftrightarrow \psi \equiv (\varphi \to \psi) \land (\psi \to \varphi)$

Semantics

• A Kripke Structure $\mathcal M$ for $\mathcal P$ and $\mathcal A=\{1,\ldots,n\}$ is a tuple

$$\mathcal{M} = \langle \mathcal{W}, \mathcal{R}_1, \dots, \mathcal{R}_n, \pi \rangle,$$

where:

- W is a non-empty set;
- For each $a \in \mathcal{A}$, $\mathcal{R}_a \subseteq \mathcal{W} \times \mathcal{W}$;
- $\pi: \mathcal{W} \times \mathcal{P} \longrightarrow \{T, F\}.$
- The satisfiability relation \models between a world $w \in \mathcal{W}$ in a Kripke structure \mathcal{M} and a formula is inductively defined by:
 - $(\mathcal{M}, w) \models p, p \in \mathcal{P}, \text{ iff } \pi(w, p) = T;$
 - $(\mathcal{M}, w) \models \neg \varphi \text{ iff } (\mathcal{M}, w) \not\models \varphi;$
 - $(\mathcal{M}, w) \models \varphi \land \psi \text{ iff } (\mathcal{M}, w) \models \varphi \text{ and } (\mathcal{M}, w) \models \psi;$
 - $(\mathcal{M}, w) \models \Box \varphi$ iff for all w', $w\mathcal{R}_a w'$ implies $(\mathcal{M}, w') \models \varphi$.

Reasoning Tasks

$$\mathcal{M} = \langle \mathcal{W}, \mathcal{R}_1, \dots, \mathcal{R}_n, \pi \rangle$$

• A formula φ is locally satisfiable iff there is a model \mathcal{M} and $w \in \mathcal{W}$ such that $\langle \mathcal{M}, w \rangle \models \varphi$. In this case, we say that \mathcal{M} satisfies φ , denoted by $\mathcal{M} \models_L \varphi$.

- A formula φ is globally satisfiable iff there is a model \mathcal{M} and for all $w \in \mathcal{W}$ we have that $\langle \mathcal{M}, w \rangle \models \varphi$. In this case, we say that \mathcal{M} globally satisfies φ , denoted by $\mathcal{M} \models_G \varphi$.
- A formula φ is satisfiable under the global constraints $\Gamma = \{\gamma_1, \ldots, \gamma_m\}$ iff there is a model \mathcal{M} such that $\mathcal{M} \models_G \Gamma$ and there is $w \in \mathcal{W}$ such that $\langle \mathcal{M}, w \rangle \models_L \varphi$.

Reasoning Tasks

$$\mathcal{M} = \langle \mathcal{W}, \mathcal{R}_1, \dots, \mathcal{R}_n, \pi \rangle$$

- A formula φ is locally satisfiable iff there is a model \mathcal{M} and $w \in \mathcal{W}$ such that $\langle \mathcal{M}, w \rangle \models \varphi$. In this case, we say that \mathcal{M} satisfies φ , denoted by $\mathcal{M} \models_L \varphi$.

 PSPACE-complete [Ladner, 1977, Halpern and Moses, 1992]
- A formula φ is globally satisfiable iff there is a model \mathcal{M} and for all $w \in \mathcal{W}$ we have that $\langle \mathcal{M}, w \rangle \models \varphi$. In this case, we say that \mathcal{M} globally satisfies φ , denoted by $\mathcal{M} \models_G \varphi$. EXPTIME-complete [Spaan, 1993]
- A formula φ is satisfiable under the global constraints $\Gamma = \{\gamma_1, \ldots, \gamma_m\}$ iff there is a model \mathcal{M} such that $\mathcal{M} \models_G \Gamma$ and there is $w \in \mathcal{W}$ such that $\langle \mathcal{M}, w \rangle \models_L \varphi$. EXPTIME-complete [Spaan, 1993]

Local Reasoning

 Nice properties: finite, tree-like models with height bounded by the modal depth/modal level of the formula.

Clausal Resolution for Propositional Logic

There is only one inference rule:

Let Γ_0 be a set of clauses.

```
1: i \leftarrow 0

2: repeat

3: Choose c_1 and c_2 \in \Gamma_i such that l \in c_1 and \neg l \in c_2

4: Calculate the resolvent r

5: if r is not redundant then

6: Let \Gamma_{i+1} \leftarrow \Gamma_i \cup \{r\}

7: end if

8: i \leftarrow i+1

9: until false \in \Gamma_i or \Gamma_{i+1} = \Gamma_i
```

Let Γ_0 be a set of clauses.

```
1: i \leftarrow 0

2: repeat

3: Choose c_1 and c_2 \in \Gamma_i such that l \in c_1 and \neg l \in c_2

4: Calculate the resolvent r

5: if r is not redundant then

6: Let \Gamma_{i+1} \leftarrow \Gamma_i \cup \{r\}

7: end if

8: i \leftarrow i+1

9: until false \in \Gamma_i or \Gamma_{i+1} = \Gamma_i
```

Let Γ_0 be a set of clauses.

```
1: i \leftarrow 0

2: repeat

3: Choose c_1 and c_2 \in \Gamma_i such that l \in c_1 and \neg l \in c_2

4: Calculate the resolvent r

5: if r is not redundant then

6: Let \Gamma_{i+1} \leftarrow \Gamma_i \cup \{r\}

7: end if

8: i \leftarrow i+1

9: until false \in \Gamma_i or \Gamma_{i+1} = \Gamma_i
```

Let Γ_0 be a set of clauses.

```
1: i \leftarrow 0

2: repeat

3: Choose c_1 and c_2 \in \Gamma_i such that l \in c_1 and \neg l \in c_2

4: Calculate the resolvent r

5: if r is not redundant then

6: Let \Gamma_{i+1} \leftarrow \Gamma_i \cup \{r\}

7: end if

8: i \leftarrow i+1

9: until false \in \Gamma_i or \Gamma_{i+1} = \Gamma_i
```

CNF

conjunctive normal form

$$\bigwedge_{i=1}^{n} \bigvee_{j=1}^{m} l_{ij}$$

Let $\varphi \in WFF$. There is $\varphi' \in WFF$, $\varphi' = \models \varphi$ and φ' is in CNF.

CNF

conjunctive normal form

$$\bigwedge_{i=1}^{n} \bigvee_{j=1}^{m} l_{ij}$$

Let $\varphi \in \mathsf{WFF}$. There is $\varphi' \in \mathsf{WFF}$, $\varphi' = \models \varphi$ and φ' is in CNF.

- $\bullet \quad \varphi \to \varphi' \longmapsto \neg \varphi \vee \varphi'$
- $\bullet \quad \neg(\varphi \vee \varphi') \longmapsto \neg\varphi \wedge \neg\varphi'$
- $\bullet \quad \neg \neg \varphi \longmapsto \varphi$
- $\varphi \vee (\varphi' \wedge \varphi'') \longmapsto (\varphi \vee \varphi') \wedge (\varphi \vee \varphi'')$

- (def. implication);
 - (De Morgan);
 - (De Morgan);
- (double negation elimination);

(distribution).

CNF

conjunctive normal form

$$\bigwedge_{i=1}^{n} \bigvee_{j=1}^{m} l_{ij}$$

Let $\varphi \in \mathsf{WFF}$. There is $\varphi' \in \mathsf{WFF}$, $\varphi' = \models \varphi$ and φ' is in CNF.

- $\varphi \to \varphi' \longmapsto \neg \varphi \vee \varphi'$
- $\bullet \quad \neg(\varphi \land \varphi') \longmapsto \neg\varphi \lor \neg\varphi'$
- $\bullet \quad \neg \neg \varphi \longmapsto \varphi$
- $\varphi \vee (\varphi' \wedge \varphi'') \longmapsto (\varphi \vee \varphi') \wedge (\varphi \vee \varphi'')$

(def. implication);

(De Morgan);

(De Morgan);

(double negation elimination);

(distribution).

 $\mathsf{size}((\varphi \vee \varphi') \wedge (\varphi \vee \varphi'')) = 2 \times \mathsf{size}(\varphi) + \mathsf{size}(\varphi' \wedge \varphi'') + 2$

Renaming

- Introduce new literals which replace complex subformulae;
- Introduce the definition clauses for those literals. Let φ be the formula to be replaced and new_{φ} a fresh propositional symbol:

$$Pol(\varphi) > 0 \implies new_{\varphi} \to \varphi$$

$$Pol(\varphi) < 0 \implies \varphi \to new_{\varphi}$$

$$Pol(\varphi) = 0 \implies new_{\varphi} \leftrightarrow \varphi$$

[Tseitin,1968],[PG, 1986] Let $\varphi \in WFF$. There is $\varphi' \in WFF$, φ' is in CNF, and φ' is satisfiable if, and only if, φ is satisfiable. Moreover, $\operatorname{size}(\varphi') = O(\operatorname{size}(\varphi))$.

$$(t_1 \lor t_2) \land (t_1 \rightarrow p_1 \land p_2 \land p_3 \land p_4) \land (t_2 \rightarrow q_1 \land q_2 \land q_3 \land q_4)$$

$$(t_1 \lor t_2) \land (t_1 \rightarrow p_1 \land p_2 \land p_3 \land p_4) \land (t_2 \rightarrow q_1 \land q_2 \land q_3 \land q_4)$$

$$(t_1 \lor t_2)$$

$$(\neg t_1 \lor p_1) \land (\neg t_1 \lor p_2) \land (\neg t_1 \lor p_3) \land (\neg t_1 \lor p_4)$$

$$(\neg t_2 \lor q_1) \land (\neg t_2 \lor q_2) \land (\neg t_2 \lor q_3) \land (\neg t_2 \lor q_4)$$

More on Renaming

- Renaming ensures that the CNF of a formula has size linear on the size of that formula.
- Renaming helps separating different contexts for reasoning:

$$t \to \diamondsuit \diamondsuit p$$

More on Renaming

- Renaming ensures that the CNF of a formula has size linear on the size of that formula.
- Renaming helps separating different contexts for reasoning:

$$t \to \diamondsuit \diamondsuit p$$
$$t \to \diamondsuit t_1 \land t_1 \to \diamondsuit p$$

More on Renaming

- Renaming ensures that the CNF of a formula has size linear on the size of that formula.
- Renaming helps separating different contexts for reasoning:

$$t \to \diamondsuit \diamondsuit p$$
$$t \to \diamondsuit t_1 \land t_1 \to \diamondsuit p$$

 In the case of a modal language, we need to make sure that the definition of the new literal is available wherever it is needed:

$$(t \to \diamondsuit t_1) \land \textcircled{*}(t_1 \to \diamondsuit p)$$

 The use of the universal operator "mimics" the renaming procedure for First-Order Logic, where definitions are universally quantified.

Clauses - Previous Calculus

In [ND, 2006] and [ND, 2007] (inspired by [Mints, 1990])

- Initial clause $*(start \rightarrow \bigvee_{b=1}^{r} l_b)$
- Literal clause $*(true \rightarrow \bigvee_{b=1}^{r} l_b)$
- Positive *a*-clause $*(l' \rightarrow al)$
- Negative *a*-clause $*(l' \rightarrow \diamondsuit l)$

where l, l', $l_b \in \mathcal{L}$. Positive and negative a-clauses are together known as $modal\ a$ -clauses; the index a may be omitted if it is clear from the context.

Modal Layered Clauses

In [NHD, 2015, NDH, 2019] (inspired by [AdNdR, 2000], [AGHdR, 2000]):

- Literal clause $ml: \bigvee_{b=1}^{r} l_b$
- Positive *a*-clause $ml: l' \rightarrow \boxed{a}l$
- Negative *a*-clause $ml: l' \rightarrow \diamondsuit l$

where $ml \in \mathbb{N} \cup \{*\}$ and $l, l', l_b \in \mathcal{L}$.

[LRES]
$$ml: D \lor l$$

$$ml': D' \lor \neg l$$

$$\overline{\sigma(\{ml, ml'\})}: D \lor D'$$

[MRES]
$$ml: l_1 \rightarrow al$$

$$ml': l_2 \rightarrow al$$

$$\sigma(\{ml, ml'\}): \neg l_1 \vee \neg l_2$$

where
$$\sigma(\{i\})=i$$
 , $\sigma(\{i,*\})=i$, $i\in \{*\}\cup \mathbb{N}$

$$0: p \vee q, 0: \neg p \vee q$$

$$*: p \lor q, *: \neg p \lor q$$

$$*: p \lor q, 1: \neg p \lor q$$

$$0: p \vee q, 1: \neg p \vee q$$

[LRES]
$$ml: D \lor l$$

$$ml': D' \lor \neg l$$

$$\overline{\sigma(\{ml, ml'\})}: D \lor D'$$

[MRES]

$$ml: l_1 \rightarrow \boxed{a}l$$

$$ml': l_2 \rightarrow \boxed{\phi} \neg l$$

$$\sigma(\{ml, ml'\}): \neg l_1 \lor \neg l_2$$

where
$$\sigma(\{i\}) = i$$
, $\sigma(\{i, *\}) = i$, $i \in \{*\} \cup \mathbb{N}$:

$$0: p \vee q, 0: \neg p \vee q$$

$$*: p \lor q, *: \neg p \lor q$$

$$*: p \lor q, 1: \neg p \lor q$$

$$0: p \vee q, 1: \neg p \vee q$$

[GEN1] $ml_{1}: \quad l_{1}' \rightarrow \boxed{a} \neg l_{1}$ \vdots $ml_{m}: \quad l_{m}' \rightarrow \boxed{a} \neg l_{m}$ $ml_{m+1}: \quad l_{m+1}' \rightarrow \diamondsuit \neg l$ $ml_{m+2}: \quad l_{1} \lor \ldots \lor l_{m} \lor l_{m+1}$

$$\sigma\left(\{ml_{m+2}-1\}\cup\bigcup_{i=1}^{m+1}\{ml_i\}\right): \neg l_1'\vee\ldots\vee\neg l_m'\vee\neg l_{m+1}'$$

[GEN1]
$$ml_{1}: l'_{1} \rightarrow \boxed{a} \neg l_{1}$$

$$\vdots$$

$$ml_{m}: l'_{m} \rightarrow \boxed{a} \neg l_{m}$$

$$ml_{m+1}: l'_{m+1} \rightarrow \boxed{\phi} \neg l_{m+1}$$

$$ml_{m+2}: l_{1} \vee \ldots \vee l_{m} \vee l_{m+1}$$

$$\sigma\left(\{ml_{m+2}-1\}\cup\bigcup_{i=1}^{m+1}\{ml_i\}\right): \neg l'_1\vee\ldots\vee\neg l'_m\vee\neg l'_{m+1}$$

Inference Rules

[GEN1] $ml_1: \quad l'_1 \to \boxed{a} \neg l_1$ \vdots $ml_m: \quad l'_m \to \boxed{a} \neg l_m$ $ml_{m+1}: \quad l'_{m+1} \to \boxed{\phi} \neg l_{m+1}$ $ml_{m+2}: \quad l_1 \lor \ldots \lor l_m \lor l_{m+1}$

$$\sigma\left(\{ml_{m+2}-1\}\cup\bigcup_{i=1}^{m+1}\{ml_i\}\right): \neg l'_1\vee\ldots\vee\neg l'_m\vee\neg l'_{m+1}$$

Inference Rules

[GEN1] $ml_{1}: \quad l_{1}' \rightarrow \boxed{a} \neg l_{1}$ \vdots $ml_{m}: \quad l_{m}' \rightarrow \boxed{a} \neg l_{m}$ $ml_{m+1}: \quad l_{m+1}' \rightarrow \boxed{\phi} \neg l_{m+1}$ $ml_{m+2}: \quad l_{1} \lor \ldots \lor l_{m} \lor l_{m+1}$

$$\sigma\left(\{ml_{m+2}-1\}\cup\bigcup_{i=1}^{m+1}\{ml_i\}\right): \neg l_1'\vee\ldots\vee\neg l_m'\vee\neg l_{m+1}'$$

C. Nalon

Inference Rules

[GEN2]
$$ml_{1}: l'_{1} \rightarrow al_{1}$$

$$ml_{2}: l'_{2} \rightarrow a \neg l_{1}$$

$$ml_{3}: l'_{3} \rightarrow al_{2}$$

$$ml: \neg l'_{1} \vee \neg l'_{2} \vee \neg l'_{3}$$

where $ml = \sigma(\{ml_1, ml_2, ml_3\})$

[GEN3] $ml_{1}: l'_{1} \rightarrow \boxed{a} \neg l_{1}$ \vdots $ml_{m}: l'_{m} \rightarrow \boxed{a} \neg l_{m}$ $ml_{m+1}: l' \rightarrow \diamondsuit l$ $ml_{m+2}: l_{1} \lor \ldots \lor l_{m}$ $ml: \neg l'_{1} \lor \ldots \lor \neg l'_{m} \lor \neg l'$

where $ml = \sigma(\{ml_1, \dots, ml_{m+1}, ml_{m+2} - 1\})$

Examples

$$\Diamond \Diamond p \wedge \Box \neg p$$

- $0: t_0$
- $0: t_0 \to \diamondsuit t_1$
- $1: t_1 \to \Diamond p$
- $0: t_0 \to \square \neg p$

Examples

$$\Diamond \Diamond p \wedge \Box \neg p$$

$$p \land \Diamond \neg p$$

$$0: t_0$$

$$0: t_0 \to \diamondsuit t_1$$

$$1: t_1 \to \Diamond p$$

$$0: t_0 \to \Box \neg p$$

$$0: t_0$$

$$0: \neg t_0 \lor p$$

$$0: t_0 \to \Diamond \neg p$$

Examples

$$0: t_0$$

$$0: t_0 \rightarrow \diamondsuit t_1$$

$$1: t_1 \to \Diamond p$$

$$0: t_0 \to \Box \neg p$$

$$p \land \Diamond \neg p$$

$$0: t_0$$

$$0: \neg t_0 \lor p$$

$$0: t_0 \to \Diamond \neg p$$

$$p \land \Diamond \neg p$$

$$*: t_0$$

$$*: \neg t_0 \lor p$$

$$*: t_0 \to \Diamond \neg p$$

Implementation

KSP [NHD, 2016, NHD, 2020]:

 Set-of-support (given-clause, as in Otter), but there is one set of support for each modal level;

KSP [NHD, 2016, NHD, 2020]:

- Set-of-support (given-clause, as in Otter), but there is one set of support for each modal level;
- Refinements: negative, ordered, negative+ordered, ordered with selection, positive resolution;

KSP [NHD, 2016, NHD, 2020]:

- Set-of-support (given-clause, as in Otter), but there is one set of support for each modal level;
- Refinements: negative, ordered, negative+ordered, ordered with selection, positive resolution;
- Pre-processing: simplification, pure literal elimination, modal level pure literal elimination, unit propagation, populating automatically the usable, different techniques for renaming, prenex/antiprenex, cnf;

KSP [NHD, 2016, NHD, 2020]:

- Set-of-support (given-clause, as in Otter), but there is one set of support for each modal level;
- Refinements: negative, ordered, negative+ordered, ordered with selection, positive resolution;
- Pre-processing: simplification, pure literal elimination, modal level pure literal elimination, unit propagation, populating automatically the usable, different techniques for renaming, prenex/antiprenex, cnf;
- Redundancy elimination: (lazy) forward/backward subsumption, pure literal elimination, modal level pure literal elimination . . .

KSP [NHD, 2016, NHD, 2020]:

- Set-of-support (given-clause, as in Otter), but there is one set of support for each modal level;
- Refinements: negative, ordered, negative+ordered, ordered with selection, positive resolution;
- Pre-processing: simplification, pure literal elimination, modal level pure literal elimination, unit propagation, populating automatically the usable, different techniques for renaming, prenex/antiprenex, cnf;
- Redundancy elimination: (lazy) forward/backward subsumption, pure literal elimination, modal level pure literal elimination . . .
- Clause selection: shortest, newest, oldest, greatest literal, smallest literal.

KSP [NHD, 2016, NHD, 2020]:

- Set-of-support (given-clause, as in Otter), but there is one set of support for each modal level;
- Refinements: negative, ordered, negative+ordered, ordered with selection, positive resolution;
- Pre-processing: simplification, pure literal elimination, modal level pure literal elimination, unit propagation, populating automatically the usable, different techniques for renaming, prenex/antiprenex, cnf;
- Redundancy elimination: (lazy) forward/backward subsumption, pure literal elimination, modal level pure literal elimination . . .
- Clause selection: shortest, newest, oldest, greatest literal, smallest literal.

The full pack is in my webpage: nalon.org.

KsP- LWB - k_t4p - Modal Layering

Figura 1: Unsatisfiable Formulae

Figura 2: Satisfiable Formulae

C. Nalon

KsP- MQBF - Different Refinements

All Provers - MQBF

All Provers - LWB

All Provers - 3CNF

Oracle/Portfolio

BDDTab	FaCT++	InKreSAT	KsP	Spartacus	OFT + Vampire	Unsolved
674	111	912	849	748	57	227

C. Nalon

LMU, 12/10/2023

Some Notes

- The calculus is sound, complete, and terminating (TABLEAUX 2015, ToCL 2020).
- The calculus for K_n was implemented and tested (IJCAR 2016, JAR 2020).
- Negative and ordered resolution, together with layering, are also complete (ToCL 2020).
- Ongoing and future work:
 - KSP is not any clever (yet).
 - Renaming can be improved????
 - Saturation takes a lot of time: combined proof methods might help here.

- [Halpern and Moses, 1992] Halpern, J. Y. and Moses, Y. (1992). A guide to completeness and complexity for modal logics of knowledge and belief. *Artificial Intelligence*, 54(3):319–379.
- [Ladner, 1977] Ladner, R. E. (1977). The computational complexity of provability in systems of modal propositional logic. *SIAM J. Comput.*, 6(3):467–480.
- [Mints, 1990] Mints, G. (1990). Gentzen-type systems and resolution rules, part I: Propositional logic. *Lecture Notes in Computer Science*, 417:198–231.
- [Spaan, 1993] Spaan, E. (1993). *Complexity of Modal Logics*. PhD thesis, University of Amsterdam.

C. Nalon

- [NHD, 2015] Nalon, C., Hustadt, U., and Dixon, C. (2015a). A modal-layered resolution calculus for K. In [Nivelle, 2015], pages 185–200.
- [Nivelle, 2015] Nivelle, H. D., editor (2015). *Automated Reasoning with Analytic Tableaux and Related Methods 24th International Conference, TABLEAUX 2015, Wrocław, Poland, September 21-24, 2015. Proceedings*, volume 9323 of *Lecture Notes in Computer Science*. Springer.
- [NHD, 2016] Nalon, C., Hustadt, U., and Dixon, C. (2016). KSP: A resolution-based prover for multimodal K. In Olivetti, N. and Tiwari, A., editors, *Automated Reasoning: 8th International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 July 2, 2016, Proceedings*, pages 406–415, Cham. Springer International Publishing.
- [NDH, 2019] Nalon, C., Dixon, C., Hustadt, U.: Modal resolution: Proofs, layers, and refinements. ACM Trans. Comput. Log. **20**(4), 23:1–23:38 (2019)
- [NHD, 2020] Nalon, C., Hustadt, U., Dixon, C.: KSP: Architecture, refinements, strategies and experiments. J. Autom. Reason. **64**(3), 461–484 (2020)

- [ND, 2006] Nalon, C. and Dixon, C. (2006). Anti-prenexing and prenexing for modal logics. In *Proceedings of the 10th ECAI*, Liverpool, UK.
- [ND, 2007] Nalon, C. and Dixon, C. (2007). Clausal resolution for normal modal logics. *J. Algorithms*, 62:117–134.
- [NMD, 2014] C. Nalon, J. Marcos, and C. Dixon. Clausal resolution for modal logics of confluence. In S. Demri, D. Kapur, and C. Weidenbach, editors, *Automated Reasoning. Proceedings of the 7th International Joint Conference on Automated Reasoning (IJCAR)*, volume 8562 of *Lecture Notes in Computer Science*, pages 322–336. Springer, 2014.

[Tseitin,1968] G. Tseitin. On the complexity of derivations in the propositional logics. In A. O. Slisenko, editor, *Studies in Constructive Mathematics and Mathematical Logic, Part II*, pages 115–125. 1968.

[PG, 1986] D. A. Plaisted and S. A. Greenbaum. A Structure-Preserving Clause Form Translation. *Journal of Logic and Computation*, 2:293–304, 1986.

[Haken, 1985] A. Haken. The Intractability of Resolution. *Theoretical Computer Science*, 39:297–308, 1985.

- [AdNdR, 2000] C. Areces, H. de Nivelle, and M. de Rijke. Prefixed Resolution: A Resolution Method for Modal and Description Logics. In H. Ganzinger, editor, *Proc. CADE-16*, volume 1632 of *LNAI*, pages 187–201, Berlin, July 7–10 1999. Springer.
- [AGHdR, 2000] C. Areces, R. Gennari, J. Heguiabehere, and M. D. Rijke. Tree-based heuristics in modal theorem proving. In *Proc. of ECAI 2000*, pages 199–203. IOS Press, 2000.
- [AH, 2002] C. Areces and J. Heguiabehere. HyLoRes: A hybrid logic prover, Sept. 18 2002.
- [AG, 2011] C. Areces and D. Gorín. Resolution with order and selection for hybrid logics. *Journal of Automated Reasoning*, 46(1):1–42, 2011.

	BD	DTab	Fa	aCT++	In	KreSAT	SAT KSP (cord) Sparta		oartacus	OFT + Vampire		
branch_n	22	22	12	12	15	15	18	18	12	12	50	70
branch_p	22	22	12	12	22	22	23	24	14	14	50	70
d4_n	20	440	6	40	34		48	1560	28	760	14	200
d4_p	26	640	24	600	18	360	54	1800	32	920	21	960
dum_n	39	2400	42	2640	23	1120	49	3200	44	2800	17	640
dum_p	42	2640	38	2320	28	1520	50	3280	46	2960	18	720
grz_n	35	2600	27	1800	50	4500	5	50	52	5500	24	1500
grz_p	35	2600	27	1800	51	5000	29	2000	52	5500	27	1800
lĭn_n	46	4000	43	3400	33	2500	1	10	50	4800	40	3100
lin_p	14	500	28	10000	56	500000	23	5000	55	400000	28	10000
path_n	37	290	48	400	7	14	54	1000	47	400	41	330
path_p	35	270	48	400	5	12	54	1000	47	400	41	330
ph_n	10	10	8	16	24	90	3	6	21	<i>75</i>	15	45
ph_p	11	11	9	8	10	10	5	5	9	9	10	10
poly_n	39	600	34	500	30		36	540	44	720	20	220
poly_p	38	580	34	500	28	400	36	540	44	700	20	220
t4p_n	40	3500	24	1500	17	800	39	3000	45	6000	11	200
t4p_p	48	7500	49	8000	28		49	8000	53	12000	14	500