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Introduction



e Modal logics have been used in Computer Science to represent
properties of complex systems: temporal, epistemic, obligations,
choice, actions, and so on.

e Given a representation of a computational system in a logical
language, we also want to reason about the system and their
properties.

e There are different proof methods we could use:

e Some modal languages can be translated into first-order and we
could then use readily available automated reasoners.

e Provide a proof method within the language of a particular modal
logic.
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Syntax and Semantics

e Modal logics are extensions of propositional logic with operators °
and >

e Evaluation of a formula depends on a set of worlds and on the
accessibility relations on this set.

e Different restrictions on the accessibility relations give rise to
different modal logics.
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Syntax and Semantics

e Modal logics are extensions of propositional logic with operators *
and ‘@', whereae A= {1,...,n},neN.

e Evaluation of a formula depends on a set of worlds and on the
accessibility relations on this set.

e Different restrictions on the accessibility relations give rise to
different modal logics.
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e The set of well-formed formulae, WFF:

° pEP;
e if e WFF,thensoare —pand[*]p,ae A={1,...,n};
e if pandy e WFF, then (¢ A ¢) € WFF.

e Abbreviations:

false = p A —p (for p € P)
true = —false

oV P =—(—p A )
p—oP=—-pvy
poP=(p—>P)A [ —p)
@y = —[I—e.
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e A Kripke Structure M for P and A = {1,...,n} is atuple

— <W,R1, ... ,Rn,ﬂ>,
where:

e VW is anon-empty set;
e Foreachae A, R, W x W,
e m:WxP—|{T,F}.

e The satisfiability relation = between a world w € W in a Kripke
structure M and a formula is inductively defined by:

(M,w) Ep,peP,iff r(w,p) = T;

e (M,w)E —piff (M,w) E ¢;
o (/\/l,w)zgp/\wlff(/\/lw)\—gpand(/\/lw)}:w
o (M,w) [y iff for all w', wR,w' implies (M, w') = .
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Reasoning Tasks

M :<W,R1,...,Rn,ﬂ'>

e A formula ¢ Is locally satisfiable iff there is a model M and w € W
such that (M, w) = ¢. In this case, we say that M satisfies ¢,
denoted by M =, .

e A formula ¢ Is globally satisfiable iff there is a model M and for all
w € W we have that (M, w) = ¢. In this case, we say that M
globally satisfies ¢, denoted by M = .

e A formula ¢ is satisfiable under the global constraints
[' = {v1,...,7m} iff there is a model M such that M =4 I" and there
IS w € W such that (M, w) =1, ¢.
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Reasoning Tasks

M :<W,R1,...,Rn,ﬂ'>

e A formula ¢ Is locally satisfiable iff there is a model M and w € W
such that (M, w) = ¢. In this case, we say that M satisfies ¢,
denoted by M = .

PSPACE-complete [Ladner, 1977, Halpern and Moses, 1992]

e A formula ¢ Is globally satisfiable iff there is a model M and for all
w € W we have that (M, w) = ¢. In this case, we say that M
globally satisfies ¢, denoted by M = .

EXPTIME-complete [Spaan, 1993]

e A formula ¢ is satisfiable under the global constraints
T' = {v,...,7m} iff there is a model M such that M = I" and there
IS w € W such that (M, w) =1, ¢.
EXPTIME-complete [Spaan, 1993]
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Local Reasoning

e Nice properties: finite, tree-like models with height bounded by the
modal depth/modal level of the formula.

OOp A O-p
wo 1 [<><>p A Dﬂp} 0

/
11| O0p 10 1.2|[]—-p|0
)
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1111 » |2
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Clausal Resolution for Propositional Logic

e There is only one inference rule:

IRES|] ¢ v 1
v v —l
o v oY
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Procedure

Let I'y be a set of clauses.
1: 1< 0
2: repeat
3: Choose c; andc, e I'; suchthatl e ¢; and —1[ € ¢
4:  Calculate the resolvent r
5 If » IS not redundant then
6: LetT'yy1 < I U {r}
7:  endif
8 1<— 1+ 1
9: until falsee I'; or I, = I
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CNF

e conjunctive normal form

S

Vi

i=1 j=1

Let o € WFF. There is ¢’ € WFF, ¢ == ¢ and ¢
is in CNF.
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CNF

e conjunctive normal form

S

Vi

i=1 j=1

Let o € WFF. There is ¢' € WFF, ¢ == ¢ and ¢’

is in CNF.
e w— Y — —pv (def. implication);
o —(pry)— —pv ¢ (De Morgan);
o —(pvy)— —p Ay (De Morgan);
o ——pr— (double negation elimination);
e Vv (W AY)Y— (Vv ) A (pv ) (distribution).
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CNF

e conjunctive normal form

S

Vb

i=1 j=1

Let o € WFF. There is ¢' € WFF, ¢ == ¢ and ¢’

is in CNF.
e w— Y — —pv (def. implication);
o —(pry)— —pv ¢ (De Morgan);
o —(pvy)— —p Ay (De Morgan);
o ——pr— (double negation elimination);
e Vv (W AY)Y— (Vv ) A (pv ) (distribution).

size((p v ') A (o v ") =2 x size(p) + size(p’ A ") + 2
C. Nalon LMU, 12/10/2023



e Introduce new literals which replace complex subformulae;
e Introduce the definition clauses for those literals.
Let ¢ be the formula to be replaced and new,, a fresh propositional

symbol:
Pol(p) >0 = new, — ¢
Pol(p) <0 = ¢ — new,
Pol(p) =0 = new, < ¢
" [Tseitin,1968],[PG, 1986] b

Let o € WFF. Thereis ¢/ € WFF, ¢’ is in CNF,
and ' is satisfiable if, and only if, ¢ is satisfiable.
Moreover, size(¢’) = O(size(y)).
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(t1 via) A(t1 > D1 Apa ADP3 AP A(ta— g1 AGa Ags A Qy)
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(t1 via) A(t1 > D1 Apa ADP3 AP A(ta— g1 AGa Ags A Qy)

(tl V tQ)
(—t1 v p1) A (—t1 v pa) A (—t v ps) A (—t1 Vv py)
(—ta v aq1) A (—ta v q) A (—ta v g3) A (—ta v qa)
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More on Renaming

e Renaming ensures that the CNF of a formula has size linear on the
size of that formula.
e Renaming helps separating different contexts for reasoning:

t — &Op
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More on Renaming

e Renaming ensures that the CNF of a formula has size linear on the

size of that formula.

e Renaming helps separating different contexts for reasoning:

L — &G
L — &t AT — &p

e Inthe case of a modal language, we need to make sure that the
definition of the new literal is available wherever it is needed:

(t — Ot1) A

*

(t, — @p)

e The use of the universal operator “mimics” the renaming procedure
for First-Order Logic, where definitions are universally quantified.

C. Nalon
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Clauses - Previous Calculus

In [ND, 2006] and [ND, 2007] (inspired by [Mints, 1990])

e |nitial clause *|(start — \/,_; lp)

(true — \/,_, lp)
e Positive a-clause ("' — [l
(

I — @)

e |iteral clause *

e Negative a-clause [*

where [, I', [, € L. Positive and negative a-clauses are together known
as modal a-clauses; the index a may be omitted if it is clear from the
context.
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Modal Layered Clauses

In [NHD, 2015, NDH, 2019] (inspired by [AdNdR, 2000],
[AGHdR, 2000]):

e Literal clause ml:\/,_ lp

e Positive a-clause ml:l' — [*]]

e Negative a-clause mil : ' — <l

where mle Nu {«}and [, I, [, € L.
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Inference Rules

[LRES]
ml: D v |
ml': D' v =l
o{ml,ml'}): D v D

[IMRES]
ml: 1, — [l
ml . 1y, — <l

—1

o({ml,ml'}) . =l v 5

where o({i}) = i, o ({3, #}) = 1, 0

:pvVvqg,0:—pv
i€ {+} UN b b

* 1PV g, *x TPV (
«:pvgl:—pvyg

O:pvagl:—pvyg
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Inference Rules

[GEN1] ml1 : le — | ¢ _'ll
Mly, : I —[*]=l,
M1 Z;n+1 — <C>ﬁl
Mlpao: L1V ..oV v g1
o ({mlms — 3o mlY) 2 =lv o ov =l v =l
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Inference Rules

[GEN1] ml1 : le — | ¢ _'ll
mly = 1 — [l
mlm—l—l : Z;n_|-1 — <(>_'lm—|—1
Mlpao: L1V ...V vV g

o ({mlms — 3o mlY) 2 =lv o ov =l v =l

N A

) 'm?
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Inference Rules

[GEN1] ml1 : le — | ¢ _'ll
mly = 1 — [l
mlm—l—l : Z;n_|-1 — <(>_'lm—|—1
Mlpao: 1V ...V vV g

o ({mlms — 3o mlY) 2 =lv o ov =l v =l

/! I . _'lm+17 _'lla Ty _'l’m
1> m+1 i’

S ARV RV S
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Inference Rules

[GEN2]

mll: le — all

ml2 ) Z/2 — | _'ll
mZ3 . Zé — l2
ml : =l v =l v =l

where ml = o({mly, mly, mls})

[GENG3]

ml1 ) lll — | _'ll

mly,: I — [,

mlm+1 U - @
Mlpyo i L1 Vv ...V,

ml: =lv...v=l v =l

where ml = o({mly,...,ml,i1, Mo — 1})
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OOp A -p

0: to

0 : t0—><>t1
1: 41— Op
0: to—L]—p
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OOp A -p p A<D

S = O O

to 0 : t()

to — Oty 0: —tgvp
t; — Op 0: tg— O—p
to — LI1—p
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OOp A -p p A<D

0: to 0: t()
0: t0—><>t1 0: _'t()\/p
1: t; — Op 0: to— P—p
0 : tg — —P
p A Q—p

% to

* _'t()\/p

w1ty — Qp
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Implementation



Overview

KgP [NHD, 2016, NHD, 2020]:

e Set-of-support (given-clause, as in Otter), but there is one set of
support for each modal level,
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Overview

KgP [NHD, 2016, NHD, 2020]:

C. Nalon

Set-of-support (given-clause, as in Otter), but there is one set of
support for each modal level,

Refinements: negative, ordered, negative+ordered, ordered with
selection, positive resolution;

Pre-processing: simplification, pure literal elimination, modal level
pure literal elimination, unit propagation, populating automatically
the usable, different techniques for renaming, prenex/antiprenex,
cnf:
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e Clause selection: shortest, newest, oldest, greatest literal, smallest
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Overview

KsP [NHD, 2016, NHD, 2020]:

e Set-of-support (given-clause, as in Otter), but there is one set of
support for each modal level,

e Refinements: negative, ordered, negative+ordered, ordered with
selection, positive resolution;

e Pre-processing: simplification, pure literal elimination, modal level
pure literal elimination, unit propagation, populating automatically
the usable, different techniques for renaming, prenex/antiprenex,
cnf:

e Redundancy elimination: (lazy) forward/backward subsumption,
pure literal elimination, modal level pure literal elimination . . .

e Clause selection: shortest, newest, oldest, greatest literal, smallest
literal.

The full pack is in my webpage: nalon.org.
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KgP- LWB - k_t4p - Modal Layering

2.00 20.00
1.80 == cord,no_milewelires 18.00 == cord,no_mlewel,ires
1.60 == cord, mlewel 16.00 == cord, mlewel
1.40 14.00
1.20 12.00
1.00 10.00
0.80 B.00
0.60 6.00
0.40 4.00
0.20 2.00
0.00 0.00
1 23 4567 8 9101112131415161718192021 1234567 88101112131415161718192021
Figura 1: Unsatisfiable Formulae Figura 2: Satistfiable Formulae
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KsP- MQBF - Different Refinements

MQBF

1,000
900}
800}
700¢F
600
500
400}
S00¢
200
100}

[nstances Solved

[

4 8 15 30 60 120 250 500 1000
CPU time in seconds

& KSP (cord) - KSP (negative) -#KSP (negative ordered)
-%- KSP (positive) - KSP (plain)

1/4 1/2 1
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All Provers - MQBF

MQBF
1,000

900|
300}
700}
600}
500|
400L

300
200
100}

[nstances Solved

1/4 12 1 2 4 8 15 30 60 120 250 500 1000
CPU time in seconds
= BDDTab -4 InKreSAT & KSP (cord)
-4~ FaCT++ @ Spartacus --OFT + Vampire
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All Provers - LWB

| LWB
1,000

900 |
800 |
700 ¢
GO0 |
500 r
400
300 r
200 ¢
100

Instances Solved

1/41/2 1 2 4 8 15 30 60 120 250 500 1000
CPU time in seconds
= BDDTab -4 InKreSAT & KSP (cord)
- FaCT++  -eSpartacus  --OFT + Vampire
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All Provers - 3CNF

3CNF g
1,000

000
800 |
700 |
600 .
500 "

a00 F
300 !
200 |
100 |

Instances Solved

1/_1 le}] 1 2 4 8 15 30 60 120 250 500 1000
CPU time in seconds
- BDDTab  -# InKreSAT - KSP (cord)
e FaCT++  -e=Spartacus - OFT 4 Vampire

C. Nalon LMU, 12/10/2023



Oracle/Portfolio

BDDTab | FaCT++ |InKreSAT KgP BSpartacus | OFT + Vampire | Unsolved
674 111 | 912 849 748 57 227

2,800f =5
2.600| e
2.400+ P e
2,200t _
< 2.000} g
21,8001 g
£ 1,600~
= 1,400}
% 1.200] -&- Oracle Procedure |
— 1.000 -¢- Oracle InKreSAT + Spartacus
800} # KgP (ordered) + BDDTab
+
-

GO0} KsP (ordered) + InKreSAT
400 F KgP (ordered) + Spartacus
1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

CPU time in seconds
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e The calculus is sound, complete, and terminating (TABLEAUX 2015,
ToCL 2020).

e The calculus for K,, was implemented and tested (IJCAR 2016, JAR
2020).

e Negative and ordered resolution, together with layering, are also
complete (ToCL 2020).

e Ongoing and future work:

o KgP is not any clever (yet).

e Renaming can be improved????

e Saturation takes a lot of time: combined proof methods might
help here.
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BDD Tab FaCl++ InKreSAT KgP (cord) Spartacus OFT +
Vampire
branch_n 22 22 12 12 15 15 18 18 12 12 50 70
branch_p 22 22 12 12 22 22 23 24 14 14 50 70
d4_n 20 440 6 40 34 48 1560 28 760 14 200
d4_p 26 640 24 600 18 360 54 1800 32 920 21 960
dum_n 39 2400 42 2640 23 1120 49 3200 44 2800 17 640
dum_p 42 2640 38 2320 28 1520 50 3280 46 2960 18 720
grz_n 35 2600 27 1800 50 4500 5 50 52 5500 24 1500
grz_p 35 2600 27 1800 51 5000 29 2000 52 5500 27 1800
lin_n 46 4000 43 3400 33 2500 1 10 50 4800 40 3100
lin_p 14 500 28 10000 56 500000 23 5000 55 400000 28 10000
path_n 37 290 48 400 7 14 54 1000 47 400 41 330
path_p 35 270 48 400 5 12 54 1000 47 400 41 330
ph_n 10 10 8 16 24 90 3 6 21 75 15 45
ph_p 11 11 9 8 10 10 5 5 9 9 10 10
poly_n 39 600 34 500 30 36 540 44 720 20 220
poly_p 38 580 34 500 28 400 36 540 44 700 20 220
tdp_n 40 3500 24 1500 17 800 39 3000 45 6000 11 200
tdp_p 48 7500 49 8000 28 49 8000 53 12000 14 500
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