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Motivation

e Normal modal logics have been used in computer science to represent complex situations,

e.g. multi-agent and distributed systems;

e \erification of properties of those systems may require the combination of proof methods;

e Provide a set of tools, based on clausal resolution, to tackle these problems.
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Table 1: Usual Axioms for Normal Modal Logics



Normal Modal Logics

There are 24 possible combinations, but because
T implies D

B and 5 implies 4

T and 5 implies B

4, B, and D implies T

there are fifteen modal systems:

K

T KTB=DB KAB

KD KDB K D45
KB KD5 KT4 =54
K4 KDA4 KT5 =55

K5 K45



Resolution and Correspondence Theory

Reflexivity
r = [i]p
r = P
Symmetry
r = [P
y = —Lp

r = [y




Normal Logic K,
Given a set of agents A = {1,...,n}
e propositional symbols: P = {p,q,7,...,p1,q1,71,---}
e classical connectives: {—,V, A\, =};

e modal operators: {[1],...,[n]}

Well-formed formulae (WFF ) are recursively defined:
e p € Pisin WFFk_ ;

e if o and ¢ are in WFFk_, then so are:
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Semantics

A Kripke structures for n agents over P is a tuple:
M = <S,7T,R1,...,Rn>

where
e where S is a non-empty set, with a distinguished world sg;
e 7 is afunction 7(s) : P — {V,F},; and

e R, CS x & are binary relations over S.



Interpretation of Formulae

Letp € Pand ¢, » € WFFx e M = (S, 7, Kq,...,Kp):
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— pif, and only if, 7(s)(p) = true, where p € P

= —pif, and only if, (M, s) £

= (o A1) if,and only if, (M, s) = pand (M, s) |= 1
— (V1) if, and only if, (M, s) = @ or (M, s) =

= (¢ = 1) if, and only if, (M, s) = = or (M, s) |=

= (p < ) if,and only if, (M, s) E (¢ = ) and (M, s) = (¢ = ¢)

— [i] if, and only if, for all £, such that (s, 1) € R;, (M, t) = .



Normal Form for /)

AR
i
where
.
e |nitial clause start = \/ Iy
b=1
T
® Literal clause true = \/ ly
b=1
® [i|-clause [ = m.
(2

where [ and any [, are literals and m; is a modal literal containing a [ | or a =i | operator.



Transformation

We introduce the nullary connective start, where (M, s) |= start if, and only if, s = s, and

apply the transformation rules by anchoring the translation to the initial world:

To(p) = " (start = f) A (LI*(f = »))

and doing classical style rewriting for most of the classical operators:

([ J*(x = —-=A)) = n("(xz=A))
n([(J*(e=(AADB))) = n(l(z=A)An([1*(x= B))
n([ (= (A= B))) = n([J*(zr=-AVB))
([ J*(x = -(AAB))) = n([1]"(x=-AV-B))
([ J*(r=-(A=B))) = n(U(x=A)Anr([1*(x=-B))
([ J*(x = -(AVB))) = n(lU(x=-A) An([J*(r = —-B))



Transformation — Continued

We rename complex formulae in double implications:

n([J*(r = (A< B)))

([ J*(x = -(A< B)))

([ J*(x = -y V2) An([J*(xr = -2 Vy))A
(" (y = A)) A (U (ny = —A4)A
n([(J*(z= B)) A ([]*(—z = —B))

n (" (z = (A —2) V(2 A =y))))A
(0" (y = A)) A (" (ny = 2A4)A
n([1*(z = B)) A ([1*(—z = -B))

We also rename complex formulae in the scope of a modal operator:

(" (x = []A))
()" (z = —[JA))

(" (z = ly)) An(L*(y = A))
(" (x = —lid-y) A (L (y = —A))
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Transformation — Continued

Implications are rewritten as disjunctions:
([ (x =DV (D' = D"))=n(1"(x= DV-D'VvD")

and disjunctions are then, finally, rewritten in the right form:

([ J(r=DVA)=n(1"(z=DVy)An([1"(y=A))

[ I*(true = —x V D) if D is a disjunction of literals
([ J*(x = D)) = ( )
[ 1*(x = D) if D is a modal literal
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Example

[](a A[](bA[Ec))
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Example

[](a A[](bA[Ec))

(x = [y) A (y = (a AN[(bATice)))
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Example

[](a A[](bA[Ec))

(x = [y) A (y = (a AN[(bATice)))
(y=a) A\ (y=1[](bAlilc))
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Example

[](a A[](bA[Ec))

(x = [iy) Ay = (a AN[I(bATic)))
(y=a) A\ (y=1[](bAlilc))
(y =Tlilz) A (z = bATic)

16



Example

[](a A[](bA[Ec))

(x = [iy) Ay = (a AN[I(bATic)))
(y=a) A\ (y=1[](bAlilc))
(y =Tlilz) A (z = bATic)

Giving:

start
iy
-y Va
li ]z
-2V b
li]c

true

true

<
L T T



Note on the new normal form

There is little difference between this normal form and the one previously used in the

combination of epistemic and temporal logics. For instance, where previously we had:
r=0LV..VVim V...Viim,Valin V...V -lin,
we now have

r=>LV...VL,Vm V... Vvm,VnlV...Vn,

and
my = my

= [i]m,
= —lilng

n, = -lin,

18



Results
The transformation into the normal form preserves satisfiability.
® Let  be aformulain K. If = 79(¢), then |= .

® Let ¢ be aformulain K. If = ¢, then = 79(¢).
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Anti-Prenexing

Pushing modal operators as far as we can, accordingly to the follow equivalences:

1 (e AY) < (Do ADY)

2. [H-(p=v) & ([HeAdw)

3. [A-(pVy) < ([M-pAd—)
4. —[(-(p=>y) < (o= -
5. —i-(pVY) < (Si-eV-i-)
6. —eAry) & (HdeVv-ldy)
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IS equivalent to

and

IS equivalent to

Examples

[i](a ALD(D A i)

[Ja A[OEb A [ e

ﬁ —l(a V —| ﬁ(b \V —| ﬁc))

_| - \/ —| —|—| —|b \/ —| —|—| —|—| —C
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Is this any good?

In some cases, we can get smaller sets of clauses, when the formula is firstly transformed into

its anti-prenex form:

[i](a A D)
SNF only AP + SNF
[i](a AD) lila A [i]b
. start = «x 1. start = «x
2. r = iy 2 r = lila
3. true = —wyVa 3. xr = [i]b
4. y = [i]b
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R

Is this always the case?

[i](a A [1D)
SNF only AP + SNF
[i](a A []D) [ila A[E][i]b
start = 1. start = =«
xr = [y 2. r = lila
true = —yVa 3. r = lily
true = —-yVvb 4 y =
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Nope! This is not always the case!

[i1(a A[E](bATilc))

SNF only AP + SNF

(aAI(bATL]e))  [Ha A A e

l. start = =z . start = =z

2. r = [ily 2 r = l[ia

3. true = —yVa 3 xr = [iy

4, y = iz 4 y = [i]b

5. true = —zVD 5 r = lilz

0. z = [ilc § z = [iw
7 w = [i]c
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However...

For few of the normal modal logics considered, simplification steps can be made, because the

following equivalences hold:

Equivalences Valid in Not Valid in
p < [y K45 ,,)KD45,,), S4(y,, S5(n) *

=l < —lide KD45,,), S5, K45(,,), S4(p), *
-]l < [ KD45,,), S5, K45(,,), S4(p), *
—[[ilp < —li]e | K45, KD45 ,,y, S4(,y, S5(n) *

where * is any of the other normal modal logics.
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Anti-Prenex with Simplification

[i(1(a ANTE](b A [i]e))

SNF only AP + Simp + SNF

[il(a A[i](bATi]c)) [ila A[i]b A i]c

1. start = =z 1. start = =z
2. r = [iy 2 r =
3. true = —-yVa 3. r =
4. y = [z 4 r = lic
5. true = —zVb

0. z = lic
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Is this always good?
e All simplications rules can only be applied to two normal modal logics;

® Also, a good result depends on the structure of the formula;

That is, we cannot prove that the size of the formula obtained by anti-prenexing together
with simplification is better than SNF alone.

e Experimental results, simplifications in S5;,:

— SNF alone is better than combined with anti-prenexing without simplification;

— Anti-prenexing with simplification gives better results than SNF alone in most of the
cases.
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Prenex

Anti-prenexing without simplification can generate bigger formulae, but using the same

equivalences as before, that is:

1 (e AY) < (Do ADY)

2. [A-(p=1v) o (e

3 [-(eVY) & (e AE)
4. —[-(p=>y) < ([He= -0
5. —li-(pVY) < (Ai-pV-i]-)
6. —ldeAy) & (HHeV-ly)

we could obtain formulae with a smaller number of modal operators. The drawbacks are the

same, however, as the anti-prenexing case.
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Combining all together

Formula =[i](a V =il (bV —li]—c))
l
AP =[i]=a V =i =i b V H[d] ==l ==l ] e
!
SP + Simp =li]—a V =i -b Vv -l e
l
Prenex =[i]=(a VbV c)
|
. start = =«
SNF 2. true = —li-y

2. true = aVbVc
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Conclusions

- A normal form for normal modal logics;

- The use of anti-prenex and prenex in the transformation of a formula;
- Developing metrics for when to apply these techniques;

- Future: simplification and subsumption for those logics;

- Future: the resolution rules based on the correspondence theory and the development of a

method for generating models for such logics.
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